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Introduction



AI-Assisted Preclinical Experimental Design platform

BenchSci decodes and organizes the 
information with experiment-specific 
machine learning models (over 15M 
experiments)

Benchsci 
empowers 
thousands of 
scientists to 
make better 
decisions

Same number of 
experiments

Number of targets to 
clinical trial3x-5x

BenchSci provides rapid 
insights in a clear, 

easy-to-use interface



Our approach to decode the world’s experiments follows a 3 step 
process: collect, extract, and contextualize

Data Collection & 
Curation

● Documents containing 
experimental data

● Reagents

● Bioinformatics

Extraction Contextualization

● Biomedical Entity 
Recognition Models

● Computer Vision

● ETL pipelines

● Context tagger models

● Data QA

● Conversion to Platform



Tech Hierarchy

Data mining pipelines

Data Warehouse for our parsed papers and ML datasets

Where Inference happens (using Beam’s external services pattern)

BigQuery

Beam & DataFlow Runner

Colocation Servers (replaced by inference on Dataflow)



Before: Colocation Servers

Dataflow as Client
“Pattern: Calling external 
services for data 
enrichment”

Colo as the Server
The API that receives the 
requests and serves the 
models.



Colocation Servers: Pain Points

Scalability
- Our models had to run in sequence in order for colo to handle them properly.
- Our ML inference step, our biggest bottleneck in our full run pipelines then, would soon made our jobs 

take more than 24 hours.
- Couldn’t increase/decrease our resources depending on the models and its hardware requirements

Maintainability
- Many manual steps involved
- Deploying a new model took on average ~ 3 weeks

Reproducibility
- Custom scripts and manual efforts to setup and run the pipeline 



Inference on Dataflow



Initialization + Internal Call to inference 

Code
- Integration with preprocessing pipelines

- Low Latency and CPU utilization

- Using Beam features

Local Inference

Common Patterns

Serialized data is sent to an API endpoint

- Separation of concerns
- Managed training services

Remote Inference



- Wrapping  code dependencies (and model 

artifacts.)

- Customizing the execution environment 

(GPU libraries, …).

- Copy over the necessary artifacts from a 

default Apache Beam base image

- Nvidia Drivers

- Count & Type per VM

- --experiment  "worker_accelerator=...”

Custom Containers

Inference with Dataflow Runner

GPUs



After: Inference on Dataflow

Cloud Dataflow Runner
- Machine Type: n1-standard-4
- GPU: NVIDIA T4
- Autoscaling up to 500 GPUs
- Takes < 6 hours to do inference on ~100M rows on 14 Deep Learning models including 

two SciBERT models in parallel

CI/CD
- Fully reproducible inference jobs; re-running inference on the exact same environment
- End-to-end runs from scratch using a single trigger
- Automated E2E testing on DataFlow  on every PR



Heavy Initialization & Memory 
Management

- Input Management
- Shared Model
- Worker Parallelism Control



Batching

- BatchElements(min_batch_size,, max_batch_size, …)
- GroupIntoBatches
- CombineFn
- …

Sorting Inputs & Dynamic Padding

- More deterministic as we sort our sentences by sentence lengths, with the largest 
sentences be predicted first.

-  A  bit more efficient as we now batch  on similar-sized inputs.

Input Management
Reduce the initialization overhead by batching and understand the input rows before calling 
inference



Shared by all threads of each 
worker process.

Doesn’t save you from OOM 
without Worker Thread Control

Use @setup DoFn even if you don’t 
use Shared

More important if model artifacts 
are not wrapped into the 
container at  build time and are 
downloaded from Model Registry 
at run time

   def setup(self):
        def load_model():
            return MyModelLoader.load(self.model_name)

        self.model = self._shared_handle.acquire(load_model,
tag=self.model_name)

    def process(self, batch, *args, **kwargs):
        for predicted in self.model.predict(batch):
            yield predicted

Shared Model
“Shared class for managing a single instance of an object shared by multiple threads within the 
same process.“
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Worker Parallelism Control



Multiple Models
- Pipeline Branches vs. Independent Pipelines



Pipeline Branches vs. Independent Pipelines

One Pipeline

● Branches vs. Sequential Inference

○ Keep an eye on memory 
management

● Good for coupled models with 
same:

○ Architecture

○ Input

○ Dependencies

○ Hardware Configuration

Independent Pipelines

● More flexibility in terms of 
configuration:

○ Model-specific  
container

○ GPU resources
○ Disk Space

● No inter-pipeline resource 
management

Or a hybrid approach



What Next?
- Optimization for Worker Parallelism
- Managing independent pipelines
- Multi-SDK, Multi-container Support
- Defining hardware configuration per PTransform



Summary
- Inference on Dataflow as a Feasible Option
- Heavy Initialization 
- Memory Management
- Worker Parallelism 



Q&A


