Using Dataflow for local ML batch inference

Lessons Learned
Introduction
AI-Assisted Preclinical Experimental Design platform

BenchSci provides rapid insights in a clear, easy-to-use interface

BenchSci decodes and organizes the information with experiment-specific machine learning models (over 15M experiments)

Benchsci empowers thousands of scientists to make better decisions

Same number of experiments

3x-5x Number of targets to clinical trial

PUBLICATIONS
PREPRINTS
DATABASE
VENDORS
THESES
PATENTS
ELN
Our approach to decode the world’s experiments follows a 3 step process: collect, extract, and contextualize.

1. **Data Collection & Curation**
 - Documents containing experimental data
 - Reagents
 - Bioinformatics

2. **Extraction**
 - Biomedical Entity Recognition Models
 - Computer Vision
 - ETL pipelines

3. **Contextualization**
 - Context tagger models
 - Data QA
 - Conversion to Platform
Tech Hierarchy

1. Beam & DataFlow Runner
 Data mining pipelines

2. BigQuery
 Data Warehouse for our parsed papers and ML datasets

3. Colocation Servers (replaced by inference on Dataflow)
 Where Inference happens (using Beam’s external services pattern)
Before: Colocation Servers

Dataflow as Client
“Pattern: Calling external services for data enrichment”

Colo as the Server
The API that receives the requests and serves the models.
Colocation Servers: Pain Points

Scalability
- Our models had to run in sequence in order for colo to handle them properly.
- Our ML inference step, our biggest bottleneck in our full run pipelines then, would soon make our jobs take more than 24 hours.
- Couldn’t increase/decrease our resources depending on the models and its hardware requirements

Maintainability
- Many manual steps involved
- Deploying a new model took on average ~ 3 weeks

Reproducibility
- Custom scripts and manual efforts to setup and run the pipeline
Inference on Dataflow
Common Patterns

Remote Inference

Serialized data is sent to an API endpoint

- Separation of concerns
- Managed training services

Local Inference

Initialization + Internal Call to inference Code

- Integration with preprocessing pipelines
- Low Latency and CPU utilization
- Using Beam features
Inference with Dataflow Runner

Custom Containers
- Wrapping code dependencies (and model artifacts.)
- Customizing the execution environment (GPU libraries, ...).
- Copy over the necessary artifacts from a default Apache Beam base image

GPUs
- Nvidia Drivers
- Count & Type per VM
 - --experiment "worker_accelerator=..."
After: Inference on Dataflow

Cloud Dataflow Runner
- Machine Type: n1-standard-4
- GPU: NVIDIA T4
- Autoscaling up to 500 GPUs
- Takes < 6 hours to do inference on ~100M rows on 14 Deep Learning models including two SciBERT models in parallel

CI/CD
- Fully reproducible inference jobs; re-running inference on the exact same environment
- End-to-end runs from scratch using a single trigger
- Automated E2E testing on DataFlow on every PR
Heavy Initialization & Memory Management

- Input Management
- Shared Model
- Worker Parallelism Control
Input Management

Reduce the initialization overhead by batching and understand the input rows before calling inference

✔ Batching

- BatchElements(min_batch_size,, max_batch_size, ...)
- GroupIntoBatches
- CombineFn
- ...

✔ Sorting Inputs & Dynamic Padding

- More deterministic as we sort our sentences by sentence lengths, with the largest sentences be predicted first.
- A bit more efficient as we now batch on similar-sized inputs.
Shared Model

“Shared class for managing a single instance of an object shared by multiple threads within the same process.”

- Shared by all threads of each worker process.
- Doesn’t save you from OOM without Worker Thread Control
- Use @setup DoFn even if you don’t use Shared
- More important if model artifacts are not wrapped into the container at build time and are downloaded from Model Registry at run time

```python
def setup(self):
    def load_model():
        return MyModelLoader.load(self.model_name)

    self.model = self._shared_handle.acquire(load_model, tag=self.model_name)

def process(self, batch, *args, **kwargs):
    for predicted in self.model.predict(batch):
        yield predicted
```
Worker Parallelism Control

- `--worker_accelerator type; count`
- `--sdk_container_image`
- `--sdk_worker_parallelism`
- `--no_use_multiple_sdk_containers`
- `--number_of_worker_harness_threads`
Multiple Models

- Pipeline Branches vs. Independent Pipelines
Pipeline Branches vs. Independent Pipelines

Or a hybrid approach

One Pipeline

- *Branches vs. Sequential Inference*
 - Keep an eye on memory management
- Good for coupled models with same:
 - Architecture
 - Input
 - Dependencies
 - Hardware Configuration

Independent Pipelines

- More flexibility in terms of configuration:
 - Model-specific container
 - GPU resources
 - Disk Space
- No inter-pipeline resource management
What Next?

- Optimization for Worker Parallelism
- Managing independent pipelines
- Multi-SDK, Multi-container Support
- Defining hardware configuration per PTransform
Summary

- Inference on Dataflow as a Feasible Option
- Heavy Initialization
- Memory Management
- Worker Parallelism
Q&A