
Using Dataflow for local ML
batch inference
Lessons Learned

Agenda

Who We Are

Inference on Dataflow

Heavy Initialization & Memory Management

Multiple Models

Introduction

AI-Assisted Preclinical Experimental Design platform

BenchSci decodes and organizes the
information with experiment-specific
machine learning models (over 15M
experiments)

Benchsci
empowers
thousands of
scientists to
make better
decisions

Same number of
experiments

Number of targets to
clinical trial3x-5x

BenchSci provides rapid
insights in a clear,

easy-to-use interface

Our approach to decode the world’s experiments follows a 3 step
process: collect, extract, and contextualize

Data Collection &
Curation

● Documents containing
experimental data

● Reagents

● Bioinformatics

Extraction Contextualization

● Biomedical Entity
Recognition Models

● Computer Vision

● ETL pipelines

● Context tagger models

● Data QA

● Conversion to Platform

Tech Hierarchy

Data mining pipelines

Data Warehouse for our parsed papers and ML datasets

Where Inference happens (using Beam’s external services pattern)

BigQuery

Beam & DataFlow Runner

Colocation Servers (replaced by inference on Dataflow)

Before: Colocation Servers

Dataflow as Client
“Pattern: Calling external
services for data
enrichment”

Colo as the Server
The API that receives the
requests and serves the
models.

Colocation Servers: Pain Points

Scalability
- Our models had to run in sequence in order for colo to handle them properly.
- Our ML inference step, our biggest bottleneck in our full run pipelines then, would soon made our jobs

take more than 24 hours.
- Couldn’t increase/decrease our resources depending on the models and its hardware requirements

Maintainability
- Many manual steps involved
- Deploying a new model took on average ~ 3 weeks

Reproducibility
- Custom scripts and manual efforts to setup and run the pipeline

Inference on Dataflow

Initialization + Internal Call to inference

Code
- Integration with preprocessing pipelines

- Low Latency and CPU utilization

- Using Beam features

Local Inference

Common Patterns

Serialized data is sent to an API endpoint

- Separation of concerns
- Managed training services

Remote Inference

- Wrapping code dependencies (and model

artifacts.)

- Customizing the execution environment

(GPU libraries, …).

- Copy over the necessary artifacts from a

default Apache Beam base image

- Nvidia Drivers

- Count & Type per VM

- --experiment "worker_accelerator=...”

Custom Containers

Inference with Dataflow Runner

GPUs

After: Inference on Dataflow

Cloud Dataflow Runner
- Machine Type: n1-standard-4
- GPU: NVIDIA T4
- Autoscaling up to 500 GPUs
- Takes < 6 hours to do inference on ~100M rows on 14 Deep Learning models including

two SciBERT models in parallel

CI/CD
- Fully reproducible inference jobs; re-running inference on the exact same environment
- End-to-end runs from scratch using a single trigger
- Automated E2E testing on DataFlow on every PR

Heavy Initialization & Memory
Management

- Input Management
- Shared Model
- Worker Parallelism Control

Batching

- BatchElements(min_batch_size,, max_batch_size, …)
- GroupIntoBatches
- CombineFn
- …

Sorting Inputs & Dynamic Padding

- More deterministic as we sort our sentences by sentence lengths, with the largest
sentences be predicted first.

- A bit more efficient as we now batch on similar-sized inputs.

Input Management
Reduce the initialization overhead by batching and understand the input rows before calling
inference

Shared by all threads of each
worker process.

Doesn’t save you from OOM
without Worker Thread Control

Use @setup DoFn even if you don’t
use Shared

More important if model artifacts
are not wrapped into the
container at build time and are
downloaded from Model Registry
at run time

 def setup(self):
 def load_model():
 return MyModelLoader.load(self.model_name)

 self.model = self._shared_handle.acquire(load_model,
tag=self.model_name)

 def process(self, batch, *args, **kwargs):
 for predicted in self.model.predict(batch):
 yield predicted

Shared Model
“Shared class for managing a single instance of an object shared by multiple threads within the
same process.“

Image placeholder
(delete rectangle)

Worker Parallelism Control

Multiple Models
- Pipeline Branches vs. Independent Pipelines

Pipeline Branches vs. Independent Pipelines

One Pipeline

● Branches vs. Sequential Inference

○ Keep an eye on memory
management

● Good for coupled models with
same:

○ Architecture

○ Input

○ Dependencies

○ Hardware Configuration

Independent Pipelines

● More flexibility in terms of
configuration:

○ Model-specific
container

○ GPU resources
○ Disk Space

● No inter-pipeline resource
management

Or a hybrid approach

What Next?
- Optimization for Worker Parallelism
- Managing independent pipelines
- Multi-SDK, Multi-container Support
- Defining hardware configuration per PTransform

Summary
- Inference on Dataflow as a Feasible Option
- Heavy Initialization
- Memory Management
- Worker Parallelism

Q&A

