
Handling duplicates in streaming
pipelines using Pub/Sub and
Dataflow

Zeeshan Khan
Cloud Data Engineer | Google

Streaming architecture on GCP

1: Source generated duplicates

Your source system may generate duplicates because of retries, errors,
network failure, etc.

PubSubMessage

{
 "data": string,
 "attributes": {
 string: string,

 …
},

 "messageId": string,
 "publishTime": string,
 "orderingKey": string
}

2: Publisher generated duplicates

● Messages are considered successfully published when
acknowledged by the Pub/Sub service.

● Publishing may be retired if acknowledgement was not received
within a deadline.

● Can produce duplicate messages with different message_id.

3: When reading from Pub/Sub

● Pub/Sub offers at-least once delivery

● Subscriber may receive the same message more than once.

● However duplicates have the same message_id and Apache Beam
PubsubIO does a default deduplication.

● There is no time window for this default deduplication.

4: When processing in Dataflow

● Message can be processed more than once by workers in event of
failures which may produce duplicates.

● However, Dataflow offers exactly once processing and does
checkpoints and commits before moving from one stage to another.

● Such duplicates are taken care of by Dataflow, and developers don’t
have to worry about it.

● Common mistake : Have side effects, logging from DoFn. calls to
external API

5: When writing to sink

● Each element can be retried multiple times by Dataflow workers and
may produce duplicate writes.

● It is the responsibility of the sink to detect these duplicates and handle
accordingly.

● Depending on the sink, duplicates may be filtered out, overwritten or
appear as duplicates.

5.1 : BigQuery as a sink

BigQuery I/O Insert method Pipeline type Deduplication guarantee

FILE_LOADS Streaming or Batch Guaranteed deduplication

STREAMING_INSERTS Streaming Best effort deduplication

STORAGE_WRITE_API Streaming or Batch Guaranteed deduplication

● Each message is provided with an insert_id when writing to BigQuery

● Deduplication guarantee depends on the insert method used to write data to BigQuery.

https://beam.apache.org/releases/javadoc/2.31.0/org/apache/beam/sdk/io/gcp/bigquery/BigQueryIO.Write.Method.html#FILE_LOADS
https://beam.apache.org/releases/javadoc/2.31.0/org/apache/beam/sdk/io/gcp/bigquery/BigQueryIO.Write.Method.html#STREAMING_INSERTS
https://beam.apache.org/releases/javadoc/2.31.0/org/apache/beam/sdk/io/gcp/bigquery/BigQueryIO.Write.Method.html#STORAGE_WRITE_API

5.2 : File systems as sink

● Exactly once is guaranteed as any retries by Dataflow workers in event of failure will overwrite the
file.

● Beam provides several I/O connectors to write files, all of which guarantees exactly once
processing.

I/O Category Apache beam I/O

File based FileIO, AvroIO, TextIO, TFRecordIO, XmlIO, TikaIO, ParquetIO, ThirftIO

FileSystem HadoopFileSystem, GcsFileSystem, LocalFileSystem, S3FileSystem

Streaming architecture on GCP

Deduplication options for source generated or
publisher generated duplicates

● In both cases, we have duplicate messages with different message_id,
which for Pub/Sub and downstream systems like Dataflow or BigQuery
are two unique messages.

{
 "data": “test”,
 "attributes": {
 unique_id: 123#abc,

 …
},

 "messageId": 123456,
 "publishTime": 2021-01-01 02:04:06,
 "orderingKey": ..
}

{
 "data": “test”,
 "attributes": {
 unique_id: 123#abc,

 …
},

 "messageId": 123457,
 "publishTime": 2021-01-01 02:05:01,
 "orderingKey": ..
}

Option 1: Leverage Pub/Sub message attributes

{
 "data": “test”,
 "attributes": {
 unique_id: 123#abc,

 …
},

 "messageId": 123456,
 "publishTime": 2021-01-01 02:04:06,
 "orderingKey": string
}

- Set Pub/Sub message attributes when publishing

- Leverage these attributes for deduplication

- This deduplication guaranteed to work for duplicate
messages that are published to Pub/Sub within 10
minutes of each other.

https://cloud.google.com/dataflow/docs/concepts/streaming-with-cloud-pubsub#efficient_deduplication
https://cloud.google.com/dataflow/docs/concepts/streaming-with-cloud-pubsub#efficient_deduplication

1: Leverage Pub/Sub message attributes

p.apply("Read PubSub Messages",

 PubsubIO

 .fromSubscription("<PUB/SUB SUBSCRIPTION>")

 .readMessagesWithAttributes()

 .withIdAttribute("<PUB/SUB MESSAGE ATTRIBUTE KEY>"));

ReadFromPubSub(

 subscription="<PUB/SUB SUBSCRIPTION>",

 with_attributes=True,

 id_label="<PUB/SUB MESSAGE ATTRIBUTE KEY>")

Option 1: Leverage Pub/Sub message attributes

Cons Pros

Need control over publishing to set
message attributes.

Deduplication guaranteed only if duplicate
messages are published to Pub/Sub within
10 mins. This duration cannot be
configured

No impact on latency

No additional Dataflow processing cost

https://cloud.google.com/dataflow/docs/concepts/streaming-with-cloud-pubsub#efficient_deduplication

Option 2: Use Apache Beam Deduplicate PTransform

1) Deduplication can be based on the message or a key value pair, where
the key could be derived from the message fields.

PCollection<String> words = ...;

 PCollection<String> deduplicatedWords =

 words.apply(Deduplicate.<String>values());

2) You can configure the time duration using the withDuration method,
which can be based on processing time or
event time (specified using the withTimeDomain
method).

Check Java documentation and
Python documentation
for more details on how this works.

Timers State

<Key, Value>

https://beam.apache.org/releases/javadoc/2.31.0/org/apache/beam/sdk/transforms/Deduplicate.Values.html#withDuration-org.joda.time.Duration-
https://beam.apache.org/releases/javadoc/2.31.0/org/apache/beam/sdk/transforms/Deduplicate.Values.html#withTimeDomain-org.apache.beam.sdk.state.TimeDomain-
https://beam.apache.org/releases/javadoc/2.29.0/org/apache/beam/sdk/transforms/Deduplicate.html
https://beam.apache.org/releases/pydoc/2.30.0/apache_beam.transforms.deduplicate.html?highlight=deduplicate#module-apache_beam.transforms.deduplicate

Option 2: Use Apache Beam Deduplicate PTransform

Cons Pros

- Added Dataflow cost from reads and
writes to the state stored in Streaming
Engine.

- Some added latency because of shuffling
caused by the Stateful API.

- Full control over the deduplication window
by selecting appropriate time duration.

- Can use a unique message identifier for
deduplication.

Option 3: Do post-processing in sink

Run scheduled batch job to do deduplication

Create materialized views

CREATE MATERIALIZED VIEW

 <project-id>.<my_dataset>.<deduplicated_base_table>

AS SELECT DISTINCT * FROM <base_table>

Option 3: Do post-processing in sink
(BigQuery as an example)

Cons Pros

- Additional cost associated with
Materialized views

- Restricted SQL syntax

- No impact on latency

- Zero Maintenance

https://cloud.google.com/bigquery/docs/materialized-views#supported-mvs

Questions ?

