
Fault Tolerant Integration
of Apache Beam With
Relational Database

Aug 4th 2021

Intro: Speakers
Piaw Na

Senior Staff Software Engineer

- Infrastructure
- Niantic Lightship

Savitha Jayasankar

Software Engineer

- Infrastructure
- Distributed data processing

Games

Deliver best-in-class AR experiences

Platform

Deliver best-in-class AR developer platform

Games + Platform
Intro: Niantic Inc.

Outline

● Motivation

● Implementation Attempts

● Successful Implementation

● Results

● Lessons Learned

Motivation

● Provide metrics as the CoreInfra Dataflow Pipeline detects malicious explorers and visualize

through Grafana.

Simple Right?

● CoreInfra runs as a dataflow periodically

○ Dataflows read from GCP BigTable and write to GCP Spanner.

● Dataflow time キ Event time キ Client Time

● Prometheus does not allow backdating of metrics

● Keeping Production cost low.

Core Infra DataFlow Pipeline

 Input/Extraction Layer
- Flat files
- Hbase Tables

Transformation Layer
- Data manipulations

based on conditions

Output / Loading Layer
- RDMS
- GCP Spanner

Statistics about Pipeline

● Millions of active Niantic Explorers per hour

● Billions of trackable Niantic Explorer components

● 10 GCP Spanner nodes for Niantic Explorer component history

● 1 Postgres node for Core Infra metrics and action history

● 1 dataflow per hour per game

○ 200 vCPUs (based on game volume)

○ 16 threads per vCPU

○ 30-45 minutes for dataflow completion.

Attempted Implementation

● Dataflow with Prometheus Implementation : Pull Metrics System

● Dataflow with Prometheus with PushGateway : Push Metrics System

○ Remote Storage in BigQuery

○ Remote Storage in GCP Spanner

CoreInfra Metrics Architecture
● Replaced Prometheus with Postgres DB for

metrics Storage
● Customised metrics
● Datetime can be customised to client time or

processing time based on the metrics
requirement

Dataflow and RDBMs

Naive implementations didn’t work:

● Cloud SQL Postgres: Rejects Connection Requests after 150 connections

● JDBCIO : Beam runner writes multiple times for fault tolerance ; risk of duplicates

● Postgres: More connections → high CPU utilization

● Even scaling up (max CPU + max memory) Postgres instance didn’t alleviate the above problems

Insight : Computation through dataflow

● Use Combiners to combine per-metric information

● Use .withfanout/.withHotKeyFanout to initiate the combine function without waiting for all input to

come in*

● Each worker then batch inserts to Postgres by using Prepared Insert Statements

● If the DB connection request failed, the connection request would be tried again.

*fanout input value need to be evaluated on a trial basis

Dataflow Implementation using Java

metricsMergedCollectionWithFlatten
 .apply(ParDo.of(new MetricsDBWriter())

metricsMergedCollectionWithFlatten
 .apply("EventCombiner",
 Combine.<String, Event, Event>perKey(new
EventCombiner()).withHotKeyFanout(2))
 .apply("MetricsCombiner",
 Combine.globally(new
MetricsCombiner(flow.getDBConnection(), gameServer))
 .withFanout(2));

Results

● Scaled down Postgres Instance

● Write performance no longer bottleneck

○ batch inserts are faster than GCP BigQuery streaming inserts

● Saved Compute Cost.

● Improved latency over BigQuery.

● Overall Dataflow elapsed time was improved,

○ replaced other BigQuery usages with Postgres tables

● Zero code changes for porting to other cloud providers.

● Fixed cost of analytics related queries.

Typical dataflow numbers

History_records per 30 mins 6,556,245

Batch-insert-succeeded per

30 mins

11,331

inserts/second 1,806

CPU Utilization on main instance

Transactions/sec on main
instance

Refinements

● Ensure proper use of RDBMS techniques like implementing data normalization

○ Started with jsonb column into RDBMS columns

○ Index on new columns for improved query performance

● Harden against GCP CloudSQL outages

● Setup Monitoring against Postgres outages

● Scale down over-provisioned Postgres instance

Lessons learned
● Postgres can perform 100k appends/second on SSD.

● Don’t be afraid of Postgres/RDBM

○ Dataflow can write to Postgres at scale with proper organization of dataflow stages

○ Unlike BigQuery/Spanner/Bigtable, it’s the same for all cloud platforms

○ Postgres is cheap!

● Grafana can be decoupled from Prometheus

○ Grafana can alert without prometheus in the picture

Thank you. Questions?

Niantic is Hiring: https://careers.nianticlabs.com/openings/

Reach out to us on

Piaw Na: pna@nianticlabs.com

Savitha Jayasankar: sjayasankar@nianticlabs.com

https://careers.nianticlabs.com/openings/
mailto:pna@nianticlabs.com
mailto:sjayasankar@nianticlabs.com

