TPC-DS and Apache Beam -
the time has come!

Alexey Romanenko (@AlexRomDev) Ismaél Mejia (@iemejia)
Principal Software Engineer, Talend PrircipatSoftwareEngineer—tatend
Apache Beam PMC Member Cloud Advocate, Microsoft

Apache Beam PMC Member


https://twitter.com/AlexRomDev
http://twitter.com/iemejia/

I WARNING #1

This is a Work In Progress (WIP) presentation

Lots of early progress but also still lots of things to be done



Motivation: Beam Overhead
Performance FUD or Reality?



User Reports of Performance Issues

Beam / BEAM-9440
Performance Issues with Beam Runners compared with Native Systems
# Edit Q Comment Assign  More ¥ Start Progress  Resolve issue  Need more information

v Details

Type B Bug Status [ OPEN |

Priority ¥ P3 Resolution Unresolved
Affects Version/s None Fix Version/s None
Component/s runner-apex, runner-flink, runner-spark

Labels None

v Description

While doing a performance evaluation of Apache Beam with Spark Runner - | found that even for a simple word count problem on a text file — Beam with
Spark runner was slower by a factor of 5 times as compared to Spark for a dataset as small as 14 GB.



Our employer (product team comments)

“Previewing the result of pipelines takes too much time (~30s for tiny data)”

Anonymous Software Engineer #1

“Running jobs takes too long”
Anonymous QA Engineer #1



[ [cs.PF] 18 Jul 2019

Quantitative Impact Evaluation of an Abstraction
Layer for Data Stream Processing Systems

Guenter Hesse*, Christoph Matthies*, Kelvin Glass', Johannes Huegle* and Matthias Uflacker*
*Hasso Plattner Institute
University of Potsdam
Email: firstname.lasthame @hpi.de
TDepartment of Mathematics and Computer Science
Freie Universitit Berlin
Email: kelvin.glass@ fu-berlin.de

Abstract—With the demand to process ever-growing data
volumes, a variety of new data stream processing frameworks
have been developed. Moving an implementation from one
such system to another, e.g., for performance reasons, requires
adapting existing applications to new interfaces. Apache Beam
addresses these high substitution costs by providing an ab-
straction layer that enables executing programs on any of the
supported streaming frameworks. In this paper, we present a
novel benchmark architecture for comparing the performance
impact of using Apache Beam on three streaming frameworks:
Apache Spark Streaming, Apache Flink, and Apache Apex. We
find significant performance penalties when using Apache Beam
for application development in the surveyed systems. Overall,
usage of Apache Beam for the examined streaming applications
caused a high variance of query execution times with a slowdown
of up to a factor of 58 compared to queries developed without the
abstraction layer. All developed benchmark artifacts are publicly

Apache Beam [2], which provides a unified programming
model for describing both batch and streaming data-parallel
processing pipelines. Pipelines are described using a single
Software Development Kit (SDK) and can then be executed by
a variety of different frameworks, without developers needing
detailed knowledge of the employed implementations. Thus,
execution frameworks can be exchanged without the need to
adapt code. As an additional benefit, Apache Beam enables
to benchmark multiple systems with a single implementation.
Conceptually, this idea can be compared to object-relational
mapping (ORM), where data stored in database tables is
encapsulated in objects. Data can be queried and manipulated
just by using these objects instead of writing SQL [3].

A question concerning abstraction layers is if their usage has



Quantitative Impact Evaluation of an Abstraction
Layer for Data Stream Processing Systems

Guenter Hesse™. Christoph P

'De

Abstract—With  the demand to proces
volumes. a variety of new data stream pr
have been developed. Moving an imple
such system to another, e.g.. for performa
adapting existing applics nlmm to new inte
addresses these high substitution costs |
straction laver that enables executing proy
supported streaming frameworks. In this
novel benchmark architecture for compar
impact of using Apache Beam on three st
Apache Spark Streaming. Apache Flink, w
{ind significant performance penalties wher
for application development in the survey

usage of Apache Beam for the examined st %
caused a high variance of query execution times with a slow d(mn
of up to a factor of 38 compared to queries developed without the
abstraction layer. All developed benchmark artifacts are publicly

Abstract—With the demand to process ever-growing data
volumes, a variety of new data stream processing frameworks
have been developed. Moving an implementation from one
such system to another, e.g., for performance reasons, requires
adapting existing applications to new interfaces. Apache Beam
addresses these high substitution costs by providing an ab-
straction layer that enables executing programs on any of the
supported streaming frameworks. In this paper, we present a
novel benchmark architecture for comparing the performance
impact of using Apache Beam on three streaming frameworks:
Apache Spark Streaming, Apache Flink, and Apache Apex. We
find significant performance penalties when using Apache Beam
for application development in the surveyed systems. Overall,
usage of Apache Beam for the examined streaming applications
caused a high variance of query execution times with a slowdown
of up to a factor of 58 compared to queries developed without the
abstraction layer. All developed benchmark artifacts are publicly
ava!lable to ensure reproducible results.

CHUAPDULATU I V0TS, LZdid Ll U0 gucnicu anu 1z llJlI]'II [LN N

just by using these objects instead of writing SQL 3],

A question concerning abstraction layers is il their usage has

* This is worse case but paper highlights an average 3-7X overhead



The eternal question:

What is the overhead of Beam?

Let’s run a benchmark to find out...
“If you can’t measure it, you can’t improve it.”



I WARNING #2

Performance results can be HEAVILY biased

Benchmarketing. Convenient narrative (my project as the winner)
Results not reproducible or worse backed by any data

Is Raw Performance the only thing that matters?
e Correctness
e Reliability
e Price



Nexmark (current Beam benchmark)

Benchmark for queries over data streams
Online Auction System %

7
7
7
7
% - Auction [

g Person

Il Bidder

Person
Bidder

Example:
Query 4: What is the average selling price for each auction category?

10



Nexmark

8 (+5) benchmark queries of a continuous processing system

e Continuous queries a good match for the Beam Model
e Run regularly on Beam and helped find MANY issues + regressions

but
e Not ran at scale (mea culpa - Ismaél)
e Unpublished research paper (not Industry standard)
e You cannot compare results with other systems



What is TPC-DS?



TPC-DS Benchmark

TPC-DS is a decision support benchmark that models several generally

applicable aspects of a decision support system, including queries and data
maintenance.

e Industry standard benchmark (OLAP/Data Warehouse)
o http://www.tpc.org/tpcds/

e Implemented for many analytical processing systems
o RDBMS, Apache Spark, Apache Flink, etc

e Wide range of different queries (SQL)

e Existing tools to generate input data of different sizes


http://www.tpc.org/tpcds/

TPC-DS Tables

Reason

N

Income_Band

Household_Demographics

Customer_Demographics

/

e
Cusmmer_Addre‘s:‘

Date_Dim

Time_Dim

Customer




TPC-DS Input Data

Data source:

e Input files are generated with CLI tool (CSV)
The tool constraints the minimum amount of data to be generated to

1GB.
e TPC-DS dsdgen tool for text (CSV) generation.

Generated datasets:

e Total sizes: 1GB / 10GB / 100GB / 1000GB



TPC-DS Queries

e 99 distinct SQL-99 queries (including OLAP extensions)

e Each query answers a business question, which illustrates the business
context in which the query could be used

e All queries are “templated” with random input parameters.

e Used to compare SQL implementation of completeness and
performance



TPC-DS via Beam SQL



TPC-DS extension in Beam

e Goals:
o Compare the performance of Beam SQL for different runners and their different
versions

o Run Beam SQL on different environments

o Detect missing Beam SQL features / incompatibilities
o Find Performance issues in Beam



TPC-DS extension in Beam

e Initially contributed by Yuwei Fu as a part of GSoC 2020 project [BEAM-9891]
o Supported only Dataflow runner
o Text files (CSV) as an input source
o 3 (of 99) queries passing

e Later adjusted
o + support of Spark Runner
o + support of Parquet input (on the way). Why? Let’s talk a bit later....
o + 25 (of 103) queries passing



TPC-DS extension in Beam

e 103 SQL queries (99 + 4) to run
o 25

o 78 failed
e The most common issues:

o “java.lang.UnsupportedOperationException: Non equi-join is not supported”

o  “java.lang.UnsupportedOperationException: CROSS JOIN, JOIN ON FALSE is not supported!”

o “java.lang.UnsupportedOperationException: ORDER BY without a LIMIT is not supported!”

o org.apache.calcite.plan.RelOptPlannerSCannotPlanException: There are not enough rules to produce a

node with desired properties: convention=BEAM_LOGICAL. All the inputs have relevant nodes, however
the cost is still infinite.”



Different implementations of TPC-DS queries
In Beam



TPC-DS Query 3

Query3 is a good example that contains all main data processing primitives (filtering, aggregation,
sorting, selecting, etc) and implemented in different ways as Beam and Spark pipelines.

SELECT dt.d_year, item.i_brand_id brand_id, item.i brand brand,
SUM(ss_ext_sales price) sum_agg
FROM date dim dt, store_sales, item
WHERE dt.d date sk = store sales.ss sold date_ sk
AND store sales.ss item sk = item.i item sk
AND item.i manufact_id = 128
AND dt.d_moy=11
GROUP BY dt.d year, item.i brand, item.i brand id
ORDER BY dt.d year, sum_agg desc, brand id
LIMIT 100



TPC-DS Query 3, Beam SQL, CSV

PCollection<String>

TextlO.read().from(
“/path/to/date_dim”)

ParDo.of(
new DateDimFn())

PCollection<String>

TextlO.read().from(

“/path/to/store_sales”)

ParDo.of(
new StoreSalesFn())

PCollection<StoreSales>

(JavaFieldSchema.class)

private static class DateDim {
public final int d_date_sk;
public final int d_year;
public final int d_moy;

public DateDim(int d_date_sk,

int d_year,
int d_moy) {...}

PCollection<String>

TextlO.read().from(
“/path/to/item”)

ParDo.of(
new IltemFn())

v
. “4\\

X\O
N
pCP

»
>

PCollectionTuple.of(...)

\ 4

PCollection<Row>

PCollection<String>

\

TextlO.write()




Is CSV the best format to benchmark?

e Works with the TPC-DS generated data via dsdgen
e Nice to compare with other benchmarks running on raw TPC-DS

e (CSV-like format is not good enough for SQL data optimizations
o column projection, filter predicates, etc

e More realistic Big Data use case (Datalake)

Parquet to the rescue!
Databricks TPC-DS Kit to generate Parquet files (re-uses dsdgen)



TPC-DS Query 3, Beam SQL, Parquet

Schema schemaDateDim = Utils.getAvroSchema("date_dim");
Schema schemaDateDimProjected =
getProjectedSchema(new String[] {"d_date_sk", "d_year", "d_moy"}, schemaDateDim);

PCollection<GenericRecord> recordsDateDim = pipeline.apply(
ParquetIO.read(schemaDateDim)

.withProjection(schemaDateDimProjected);

PCollection<GenericRecord> recordsStoreSales = ...;
PCollection<GenericRecord> recordslItem = ...;

PCollectionTuple tuple = PCollectionTuple.of(new TupleTag<>("date_dim"), recordsDateDim)
.and(new TupleTag<>("store_sales"), recordsStoreSales)
.and(new TupleTag<>("item"), recordsItem);



TPC-DS Query 3, Beam SQL, Parquet

ParquetlO
.read(“date_dim”)

ParquetiO
.read(“store_sales”)

PCollectionTuple.of(...)

ParquetlO
.read(“item”)

PCollection<Row>

PCollection<String>

Y

TextlO.write()




Other missing SQL features

BEAM-12315 Support PARTITIONED BY on Beam's SQL DDL
Databricks TPC-DS Parquet generation tool partitions date columns as paths

BEAM-7929 ParquetTable support for column projection and filter predicate
We completed Column Projection, Filter Predicate (pending PR)

BEAM-12134 Add Table statistics / Row estimation for ParquetTable

(Cost-Based Optimization)
e E.g. Query3 joins 2 small tables with a big one (star-like) so it could benefit of a
Map-Side based Join strategy



https://issues.apache.org/jira/browse/BEAM-12315
https://issues.apache.org/jira/browse/BEAM-7929
https://issues.apache.org/jira/browse/BEAM-12134

TPC-DS Query 3, Beam SDK, CSV

TextlO.read()
from(“/path/to/date_dim”)

PCollection<String>

WHERE dt.d_moy=11

TextlO.read()
from(“/path/to/store_sales”)

TextlO.read()
from(“/path/to/item”)

PCollection<String>

PCollection<String>

»

FilterByFieldValue()
+ SelectFieldsFn()

StringToKVDoFn

+ CoGroupByKey

WHERE dt.d_date_sk =
store_sales.ss_sold_date_sk

—>

FilterByFieldValue()
+ SelectFieldsFn()

WHERE item.i_manufact_id =

128

GROUP BY (dt.d_year,
item.i_brand, item.i_brand_id)

\4

SUM(ss_ext_sales_price)
sum_agg

ParDo.of()

WHERE store_sales.ss_item_sk
= item.i_item_sk

StringToKVDoFn
+ CoGroupByKey

GroupByKey.of()

ORDER BY dt.d_year,
sum_agg desc, brand_id

LIMIT 100
Y

Top.of()

SELECT dt.d_year, item.i_brand_id
brand_id, item.i_brand brand,
sum_agg

\

format results
ParDo.of() into CSV format

PCollection<String>

TextlO.write()




TPC-DS

ParquetlO
.read(“date_dim”)
.withProjection(...)

Query 3, Beam SDK, Parquet

GROUP BY (dt.d_year,

WHERE dt.d_moy=11 item.i_brand, item.i_brand_id)

PCollection<GenericRecord>

ParquetlO
.read(“store_sales”)
.withProjection(...)

SUM(ss_ext_sales_price)
sum_agg

> Filter.by() GroupByKey

WHERE store_sales.ss_item_sk
= item.i_item_sk

PCollection<GenericRecord> GenericRecordToKVDoFn GenericRecordToKVDoFn

ParquetlO
read(“item”)
.withProjection(...)

—> + CoGroupByKey
+ KVToGenericRecordDoFn

+ CoGroupByKey
+ KVToGenericRecordDoFn

WHERE dt.d_date_sk =
store_sales.ss_sold_date_sk

PCollection<GenericRecord>

—> Filter.by()

WHERE item.i_manufact_id = 128

ParDo.of()

ORDER BY dt.d_year,
sum_agg desc, brand_id
LIMIT 100

Top.of()

SELECT dt.d_year, item.i_brand_id

brand_id, item.i_brand brand,
sum_agg

y

format results

ParDo.of() into CSV format

PCollection<String>

TextlO.write()




Local benchmark runs

Configuration:

Dependencies:
® Beam 2.28.0
®* Spark2.4.7

4 workers

®* local[4] or parallelism=4

1Gb input data set
®* Parquet / CSV, local files
® Macbook Pro 2017, 2,9 GHz Intel Core i7, RAM 16 GB



TPC-DS Query 3, 1Gb dataset, Spark

Time (seconds)
00:25

00:23

00:20

00:17

00:14

00:11

00:08

00:05

00:02 .
00:00 -

Beam SQL, Beam SQL, CSV Beam SDK, Beam SDK, CSV Spark SQL, Spark SQL, CSV
Parquet Parquet Parquet




EE .
A R

S33easitanisinies:
EE




I WARNING #3

Fair Benchmarking is HARD

Instance Variability (CPU/RAM speed)
Cloud Networking Performance Variability
Bad Default Configurations

Other silly configuration issues

The Curious Case of the Broken
Benchmark: Revisiting Apache

Flink® vs. Databricks Runtime

December 15, 2017 | by Aljoscha Krettek



https://www.ververica.com/blog/curious-case-broken-benchmark-revisiting-apache-flink-vs-databricks-runtime

Cluster Setup — Amazon EMR

Spark YARN container
e ~. YARN Spark App Master
Client ; e
/ it Program/ YARN
-+ Context allocator
i ¥
3
e ™ Spark Executor
M
e 25
Server YARN container

m4.xlarge (4 CPUS / 16GB RAM)
* 1 YARN master
* 5 YARN workers (1 master + 4 workers)

HDFS/

AWS EMR 5.32.0 (us-east-1)
* Hadoop 2.10.1
 Spark2.4.7
* Flink1.11.2

Input dataset and results in AWS S3

Goal: Test default configurations. Only change for similarity between systems purposes for example same
parallelism.



Cluster runs — Amazon EMR

Implementations (5) Datasets (4) Runs (3)

Beam SDK Parquet 1GB

Beam SQL Parquet 10GB
Beam SQL CSV 100GB

Spark SQL Parquet 1000GB*
Spark SQL CSV

* Beam SQL CSV version not working on this size on Spark Runner (yet)



SBEATKS

1GB

10GB

100GB

1000GB




1GB 10GB 100GB 1000GB

SBEATKS



Runtime System Issues

e BEAM-11958 Jackson MethodNotFoundException on EMR {/

o AWS SDK for Java available by default in the EMR classpath and it uses a Jackson
dependency older than Beam’s.

e BEAM-10430 Jackson JaxbAnnotationModule breaks Flink Runner on
EMR %44



https://issues.apache.org/jira/browse/BEAM-11958
https://issues.apache.org/jira/browse/BEAM-10430

1GB 10GB 100GB 1000GB

SBEATKS



O and File System surprises

BEAM-12070 Make ParquetlO splittable by default \/
ParquetlO Read default implementation was NOT Splittable so it OOM-ed on

workers

ParquetIO
.read(schema)
.from(path)


https://issues.apache.org/jira/browse/BEAM-12070

Spa

1GB

10GB

100GB

1000GB

X




O and File System surprises

BEAM-11972 ParquetlO should close all opened channels/readers \/
AWS S3 cancels reads when connections are kept open.

BEAM-12329 S3 logs warnings about non-drained InputStreams \/



https://issues.apache.org/jira/browse/BEAM-11972
https://issues.apache.org/jira/browse/BEAM-12329

Spa

1GB

10GB

100GB

1000GB




Cluster runs - Google Dataflow

JOB GRAPH EXECUTION DETAILS JOB METRICS
kel | ECTION
@  Readitem (parquet) v @ Read schema... (parquet) v @ Read date_d... (parquet) v
Succeeded Succeeded Succeeded
4sec 1 hr 55 sec 2sec
3 of 3 stages succeeded 3 of 3 stages succeeded 3 of 3 stages succeeded
© SQL Query v
Succeeded
15 hr 14 min 57 sec

7 of 7 stages succeeded

o To CSV v
Succeeded

0sec
1 of 1 stage succeeded

Google Dataflow ®  wie(w) v

Succeeded
2sec
4 of 4 stages succeeded

Constrained cluster 4 x e2-standard-4 workers + Data stored on Google Cloud Storage (GCS)



Cluster runs — Google Dataflow

Implementations (3) Datasets (4) Runs (3x2)

Beam SDK Parquet 1GB 4 workers
Beam SQL Parquet 10GB Unlimited workers
Beam SQL CSV 100GB

1000GB



1GB 10GB 100GB 1000GB

©

Google Dataflow

Credit where credit is due: Everything ran smoothly on Dataflow



Runner Translation Issues

Reports of read performance regressions on the Mailing List (ML)

25-30% Read performance degradation on Spark Runner when using the
SplittableDoFn based Read translation

BEAM-10670 Use non-SDF translation for Read by default on Spark Runner \/

No performance difference on Dataflow =


https://github.com/apache/beam/pull/14793

And finally the benchmark results...



Cluster runs — EMR — Query 3—-CSV - 1TB

Query 3 - CSV - 1000GB

EE Time

(Beam SQL, DataflowRunner)

(Spark SQL, Spark)

0 1000 2000 3000 4000 5000
Time (s)



Cluster runs — EMR — Query 3—-CSV - 1-100 GB

Query 3 - CSV - 1/10/100 GB

(Beam SQL, DataflowRunner)

(Beam SQL, SparkRunner) -

Spark SQL, Spark) -1an
(Spa + par == 10GB
== 100GB

T T T T

0 100 200 300 400 500 600 700
Time (s)



Cluster runs — EMR — Query 3 - Parquet - 1TB

Query 3 - Parquet - 1/10/100/1000 GB

N 1GB

(Beam SDK, DataflowRunner) s 10GB
EER 100GB
BN 1000GB

(Beam SQL, DataflowRunner) r

(Beam SDK, SparkRunner) r
(Spark SQL, Spark) F
0 1000 2000 3000 4000 5000 6000

Time (s)



Cluster runs — EMR — Query 3 — Parquet — 1-100GB

Query 3 - Parquet - 1/10/100 GB

N 1GB

(Beam SDK, DataflowRunner) = 10GB

NN 100GB

(Beam SQL, DataflowRunner)

(Beam SQL, SparkRunner)

(Beam SDK, SparkRunner)

(Spark SQL, Spark)

0 100 200 300 400 500 600 700 800
Time (s)



Cluster runs — Google Dataflow — Unlimited

Workers

Dataflow

Dataflow (unlimited)

* Unlimited workers give us results closer to raw Spark

Parquet - Beam SDK

Time

6 560 1060 ]5b0 20’00 25‘00 30‘00 35IOO 40'00

Parquet - Beam SQL

Dataflow (unlimited)

F T T T T
0 1000 2000 3000 4000

CSV - Beam SQL

Time

Dataflow

Dataflow {unlimited)

0 1000 2000 3000 4000 5000



Now the question became:

Where is the overhead of Beam?



Issues affecting TPC-DS on Beam performance

e Implementation issues
e Beam Model overhead



Finding implementation issues - Profiling Beam

Method Name - Allocation Call Tree Live Bytes [%] ¥  Live Bytes
R charf] I 1.703.... (100
% java.util.Arrays.copyOf (char[], int) [ ] 954,17... (56
R java.lang.AbstractStringBuilder.ensureCapacityinternal (int) [ ] 953,54... (56
I’ java.lang.AbstractStringBuilder.append (String) [ ] 952,20...(55.9
I’ java.lang.StringBuilder.append (String) _ 952,20...(55.9
R org.apache.beam.sdk.schemas.utils.AvroUtils.checkTypeName (org.apache.beam.sdk.schemas.Schema.TypeName, org.apache.beam Sdk.schemaschhema,Typ(- 945,46...(55.5
® sun.net.www.protocol.jar.Handler.parseURL (java.net.URL, String, int, int) 1,664B (0.1
R java.net.URLStreamHandler.parseURL (java.net.URL, String, int, int) 1,504B (0.1
R java.io.UnixFileSystem.resolve (String, String) 1,216 B (0.1
R com.sun.jmx.remote.internal.ServerCommunicatorAdmin.logtime (String, long) 968B (0.1
R java.lang.management.Threadinfo.initialize (Thread, int, Object, Thread, long, long, long, long, StackTraceElement[], java.lang.management.Monitorinfo[], java.lz 760 B 0
® sun.net.www.protocol.jar.Handler.parseContextSpec (java.net.URL, String) 416B (0
® org.slf4j.impl.SimpleLogger.log (int, String, Throwable) 216B (0
® java.lang.AbstractStringBuilder.append (char(], int, int) 680B (0
R java.lang.AbstractStringBuilder.append (char) 656B (0
® java.lang.String.concat (String) 584 B (0}
® java.lang.String.<init> (char(]) 48B (0
R java.util.Arrays.copyOfRange (char(], int, int) - 438,94...(25.8
® java.lang.String.<init> (char|], int, int) - 438,94...(25.8
IR java.lang.StringBuilder.toString () = 435,20...(25.5
® org.apache.beam.sdk.schemas.utils.AvroUtils.checkTypeName (org.apache.beam.sdk.schemas.Schema. TypeName, org.apache.beam.sdk.schemas.Schema. TypeNa [l 415,96...(24.4

BEAM-12210 Performance issue in AvroUtiIs.checkTypeName\/
BEAM-12247 Reduce memory allocations in InMemoryTimerInternaIs\/
BEAM-12248 Reduce ArrayList allocation in Row/RowUtilsy/

* Thanks Dan Kulp for the profiling analysis/fixes


https://issues.apache.org/jira/browse/BEAM-12210
https://issues.apache.org/jira/browse/BEAM-12247
https://issues.apache.org/jira/browse/BEAM-12248

Beam Model Overhead

“Every element on Beam has an associated event timestamp”

WindowedValue is the internal representation of a value (~13 bytes overhead)

{value, timestamp, [windows], paneInfo}

e More memory required per-element + extra GC
e Bigger shuffle size

Shuffle overhead can be improved by smarter encoding



Beam Model Overhead

GroupByKey in Beam also groups by Window, and...

Merge windows if possible

Adjust timestamps if multiple inputs m

Drop data from expired windows
Emit results based on triggers

Extra CPU use and more GC
And there is also the Timers/State overhead

BEAM-12135 Batch optimized translation for Spark Runner



https://issues.apache.org/jira/browse/BEAM-12135

Row conversion and Coder improvements (2-3%)

BEAM-12135 Use ParamWindowedValueCoder for Bounded PCollections ##4

BEAM-11571 Avoid conversion if input and output types are equal on
Convert transform y/

BEAM-12328 Conversion from Avro GenericRecords to Beam Rows takes too
much time ##4



https://issues.apache.org/jira/browse/BEAM-12135
https://issues.apache.org/jira/browse/BEAM-11571
https://issues.apache.org/jira/browse/BEAM-12328

Conclusions



Contributions

8 Issues required to run TPC-DS found (8 fixed)
10 Nice to have issues reported (5 fixed)

11 Performance Improvement Issues found (3 fixed / 3 pending)



Lessons Learned

e Defaults matter (A LOT!)

e You need real life scale runs to find real life issues

e Execution in different platforms/clouds matters for a project like Beam
e Measuring Big Data pipelines performance in the cloud is hard

e |tis hard to compare specific execution systems:

o Spark has been optimized for the batch data-lake use case for at least 6 years

e Price of abstractions



Future work
Still LOTS of things to do (wanna join?)

Make more queries pass and other SQL improvements

Automate daily runs on big size datasets

Benchmark open source runners on Google Dataproc / Kubernetes
Continue performance improvements runners translation

Run also via Portability: Python / Go queries

Open Questions
e Are native system optimizations blocked by model translation?
e Can we have a schema-based translation of Beam pipelines?



Questions ?




Extra Slides



TPC-DS Query 29

SELECT WHERE
i item_id, d1l.d_moy = 9 AND
i_item_desc, dl.d_year = 1999 AND
s_store_id, dl.d_date_sk = ss_sold_date_sk AND
s_store_name, i item_sk = ss_item_sk AND
sum(ss_quantity) AS store_sales_quantity, s_store_sk = ss_store_sk AND
sum(sr_return_quantity) AS store_returns_quantity, ss_customer_sk = sr_customer_sk AND
sum(cs_quantity) AS catalog_sales_quantity, ss_item_sk = sr_item_sk AND

FROM ss_ticket_number = sr_ticket_number AND
store_sales, sr_returned_date_sk = d2.d_date_sk AND
store_returns, d2.d_moy BETWEEN 9 AND 9 + 3 AND
catalog_sales, d2.d_year = 1999 AND
date_dim d1, sr_customer_sk = ¢s_bill customer_sk AND
date_dim d2, sr_item_sk = c¢s_item_sk AND
date_dim d3, cs_sold_date_sk = d3.d_date_sk AND
store, d3.d_year IN (1999,1999+1,1999+2)
item GROUP BY

i item_id,

i_item_desc,
s_store_id,
s_store_name
ODRDER BY
i item_id,
i_item_desc,
s_store_id,
s_store_name
LIMIT 100



TPC-DS Query 29

Types of implementations:

Beam SQL
« ParquetiO
« Parquet Table Provider

Beam SDK (Java)
« Avro GenericRecord
« Beam Schema & Row



TPC-DS Query 29, 1Gb dataset

SparkRunner, Time (seconds)

=~
-~ .
-~
-~
-
-
-~
-

Beam SQL, Parquetio Beam SQL, Beam SDK (Row) Beam SDK (Row) wih Beam SDK Beam SDK
ParquetTableProvider Broadcastloin (GenericRecord) (GenericRecord) wkh
Broadcastloin



TPC-DS Query 29, 1Gb dataset

0:43 -

0:36

0:28

0:21 -

0:14

0:07 -

0:00

Beam SQL, ParquetiO Beam SQL, Beam SDK (Row) Beam SDK (Row) with Beam SDK Beam SDK
ParquetTableProvider Broaocastioin (GenericRecord) (GenericRecord) wkh
BroadcastJoin



User Reports of Performance Issues

Extremely Slow DirectRunner ©

to dev@beam.apache.org ~

[s=]
D
D
N

n

14

N

57AM ¥ €
Hi all,

I'm experiencing very slow performance and startup delay when testing a pipeline locally. I'm reading data from a Google PubSub subscription as the data
source, and before each pipeline execution | ensure that data is present in the subscription (readable from GCP console).

I'm seeing startup delay on the order of minutes with DirectRunner (5-10 min). Is that expected? | did find a Jira ticket[1] that at first seemed related, but |
think it has more to do with BQ than DirectRunner.

I've run the pipeline with a debugger connected and confirmed that it's minutes before the first DoFn in my pipeline receives any data. Is there a way | can
profile the direct runner to see what it's churning on?



