
TPC-DS and Apache Beam -
the time has come!

Alexey Romanenko (@AlexRomDev)
Principal Software Engineer, Talend

Apache Beam PMC Member

Ismaël Mejía (@iemejia)
Principal Software Engineer, Talend

Cloud Advocate, Microsoft
Apache Beam PMC Member

https://twitter.com/AlexRomDev
http://twitter.com/iemejia/

⚠WARNING #1

This is a Work In Progress (WIP) presentation

Lots of early progress but also still lots of things to be done

Motivation: Beam Overhead
Performance FUD or Reality?

User Reports of Performance Issues

Our employer (product team comments)

“Previewing the result of pipelines takes too much time (~30s for tiny data)”
Anonymous Software Engineer #1

“Running jobs takes too long”
Anonymous QA Engineer #1

* This is worse case but paper highlights an average 3-7X overhead

The eternal question:

What is the overhead of Beam?

Let’s run a benchmark to find out…
“If you can’t measure it, you can’t improve it.”

⚠WARNING #2

Performance results can be HEAVILY biased

Benchmarketing. Convenient narrative (my project as the winner)
Results not reproducible or worse backed by any data

Is Raw Performance the only thing that matters?
● Correctness
● Reliability
● Price

Nexmark (current Beam benchmark)

Benchmark for queries over data streams
Online Auction System

Example:
Query 4: What is the average selling price for each auction category?

Auction

Person
Seller

Person
Bidder

Person
Bidder

Bid

10

Item

Nexmark

8 (+5) benchmark queries of a continuous processing system

● Continuous queries a good match for the Beam Model
● Run regularly on Beam and helped find MANY issues + regressions

but
● Not ran at scale (mea culpa - Ismaël)
● Unpublished research paper (not Industry standard)
● You cannot compare results with other systems

What is TPC-DS?

TPC-DS Benchmark

TPC-DS is a decision support benchmark that models several generally
applicable aspects of a decision support system, including queries and data
maintenance.

● Industry standard benchmark (OLAP/Data Warehouse)
○ http://www.tpc.org/tpcds/

● Implemented for many analytical processing systems
○ RDBMS, Apache Spark, Apache Flink, etc

● Wide range of different queries (SQL)

● Existing tools to generate input data of different sizes

http://www.tpc.org/tpcds/

TPC-DS Tables

TPC-DS Input Data
Data source:

● Input files are generated with CLI tool (CSV)
● The tool constraints the minimum amount of data to be generated to

1GB.
● TPC-DS dsdgen tool for text (CSV) generation.

 Generated datasets:

● Total sizes: 1GB / 10GB / 100GB / 1000GB

TPC-DS Queries
● 99 distinct SQL-99 queries (including OLAP extensions)

● Each query answers a business question, which illustrates the business
context in which the query could be used

● All queries are “templated” with random input parameters.

● Used to compare SQL implementation of completeness and
performance

TPC-DS via Beam SQL

● Goals:
○ Compare the performance of Beam SQL for different runners and their different

versions
○ Run Beam SQL on different environments
○ Detect missing Beam SQL features / incompatibilities
○ Find Performance issues in Beam

TPC-DS extension in Beam

● Initially contributed by Yuwei Fu as a part of GSoC 2020 project [BEAM-9891]
○ Supported only Dataflow runner
○ Text files (CSV) as an input source
○ 3 (of 99) queries passing

● Later adjusted
○ + support of Spark Runner
○ + support of Parquet input (on the way). Why? Let’s talk a bit later....
○ + 25 (of 103) queries passing

TPC-DS extension in Beam

TPC-DS extension in Beam

● 103 SQL queries (99 + 4) to run

○ 25 passed

○ 78 failed
● The most common issues:

○ “java.lang.UnsupportedOperationException: Non equi-join is not supported”

○ “java.lang.UnsupportedOperationException: CROSS JOIN, JOIN ON FALSE is not supported!”

○ “java.lang.UnsupportedOperationException: ORDER BY without a LIMIT is not supported!”

○ org.apache.calcite.plan.RelOptPlanner$CannotPlanException: There are not enough rules to produce a
node with desired properties: convention=BEAM_LOGICAL. All the inputs have relevant nodes, however
the cost is still infinite.”

Different implementations of TPC-DS queries
in Beam

TPC-DS Query 3
Query3 is a good example that contains all main data processing primitives (filtering, aggregation,
sorting, selecting, etc) and implemented in different ways as Beam and Spark pipelines.

 SELECT dt.d_year, item.i_brand_id brand_id, item.i_brand brand,
 SUM(ss_ext_sales_price) sum_agg
 FROM date_dim dt, store_sales, item
 WHERE dt.d_date_sk = store_sales.ss_sold_date_sk
 AND store_sales.ss_item_sk = item.i_item_sk
 AND item.i_manufact_id = 128
 AND dt.d_moy=11
 GROUP BY dt.d_year, item.i_brand, item.i_brand_id
 ORDER BY dt.d_year, sum_agg desc, brand_id
 LIMIT 100

TPC-DS Query 3, Beam SQL, CSV

TextIO.read().from(
“/path/to/date_dim”)

PCollectionTuple.of(…)

RowToCsv(csvFormat)

TextIO.write()

PCollection<StoreSales>

PCollection<DateDim>

PCollection<Item>

PCollection<Row>

PCollection<String>

TextIO.read().from(
“/path/to/store_sales”)

TextIO.read().from(
“/path/to/item”)

ParDo.of(
new DateDimFn())

ParDo.of(
new StoreSalesFn())

ParDo.of(
new ItemFn())

SqlTransform
.query(“SELECT…)

@DefaultSchema(JavaFieldSchema.class)
private static class DateDim {
 public final int d_date_sk;
 public final int d_year;
 public final int d_moy;
 @SchemaCreate
 public DateDim(int d_date_sk,
 int d_year,
 int d_moy) {...}
}

PCollection<String>

PCollection<String>

PCollection<String>

Is CSV the best format to benchmark?

● Works with the TPC-DS generated data via dsdgen
● Nice to compare with other benchmarks running on raw TPC-DS
● CSV-like format is not good enough for SQL data optimizations

○ column projection, filter predicates, etc
● More realistic Big Data use case (Datalake)

Parquet to the rescue!
Databricks TPC-DS Kit to generate Parquet files (re-uses dsdgen)

TPC-DS Query 3, Beam SQL, Parquet

Schema schemaDateDim = Utils.getAvroSchema("date_dim");
Schema schemaDateDimProjected =
 getProjectedSchema(new String[] {"d_date_sk", "d_year", "d_moy"}, schemaDateDim);

PCollection<GenericRecord> recordsDateDim = pipeline.apply(
 ParquetIO.read(schemaDateDim)
 . . .
 .withProjection(schemaDateDimProjected);
...
PCollection<GenericRecord> recordsStoreSales = ...;
PCollection<GenericRecord> recordsItem = ...;

PCollectionTuple tuple = PCollectionTuple.of(new TupleTag<>("date_dim"), recordsDateDim)
 .and(new TupleTag<>("store_sales"), recordsStoreSales)
 .and(new TupleTag<>("item"), recordsItem);

TPC-DS Query 3, Beam SQL, Parquet
ParquetIO

.read(“date_dim”)

ParquetIO
.read(“store_sales”)

ParquetIO
.read(“item”)

PCollectionTuple.of(…) SqlTransform
.query(“SELECT…)

RowToCsv(csvFormat)

TextIO.write()

PCollection<GenericRecord>

PCollection<GenericRecord>

PCollectio
n<GenericR

ecord>

PCollection<Row>

PCollection<String>

Other missing SQL features

BEAM-12315 Support PARTITIONED BY on Beam's SQL DDL
Databricks TPC-DS Parquet generation tool partitions date columns as paths

BEAM-7929 ParquetTable support for column projection and filter predicate
We completed Column Projection, Filter Predicate (pending PR)

BEAM-12134 Add Table statistics / Row estimation for ParquetTable
(Cost-Based Optimization)

● E.g. Query3 joins 2 small tables with a big one (star-like) so it could benefit of a
Map-Side based Join strategy

https://issues.apache.org/jira/browse/BEAM-12315
https://issues.apache.org/jira/browse/BEAM-7929
https://issues.apache.org/jira/browse/BEAM-12134

TPC-DS Query 3, Beam SDK, CSV

StringToKVDoFn
+ CoGroupByKey

TextIO.read()
.from(“/path/to/date_dim”)

TextIO.write()

PCollection<String>

PCollection<String>

PCollection<String>

PCollection<String>

TextIO.read()
.from(“/path/to/store_sales”)

FilterByFieldValue()
+ SelectFieldsFn()

TextIO.read()
.from(“/path/to/item”)

FilterByFieldValue()
+ SelectFieldsFn()

WHERE dt.d_moy=11

WHERE item.i_manufact_id =
128

WHERE dt.d_date_sk =
store_sales.ss_sold_date_sk

StringToKVDoFn
+ CoGroupByKey

WHERE store_sales.ss_item_sk
= item.i_item_sk

ParDo.of()

GROUP BY (dt.d_year,
item.i_brand, item.i_brand_id)

GroupByKey.of()

SUM(ss_ext_sales_price)
sum_agg

Top.of()

ORDER BY dt.d_year,
sum_agg desc, brand_id
LIMIT 100

ParDo.of()

SELECT dt.d_year, item.i_brand_id
brand_id, item.i_brand brand,
sum_agg

format results
into CSV format

TPC-DS Query 3, Beam SDK, Parquet

GenericRecordToKVDoFn
+ CoGroupByKey

+ KVToGenericRecordDoFn

ParquetIO
.read(“date_dim”)
.withProjection(…)

TextIO.write()

PCollection<GenericRecord>

PCollection<GenericRecord>

PCollection<GenericRecord>

PCollection<String>

ParquetIO
.read(“store_sales”)
.withProjection(…)

Filter.by()

ParquetIO
.read(“item”)

.withProjection(…)
Filter.by()

WHERE dt.d_moy=11

WHERE item.i_manufact_id = 128

WHERE dt.d_date_sk =
store_sales.ss_sold_date_sk

GenericRecordToKVDoFn
+ CoGroupByKey

+ KVToGenericRecordDoFn

WHERE store_sales.ss_item_sk
= item.i_item_sk

GroupByKey

GROUP BY (dt.d_year,
item.i_brand, item.i_brand_id)

ParDo.of()

SUM(ss_ext_sales_price)
sum_agg

Top.of()

ORDER BY dt.d_year,
sum_agg desc, brand_id
LIMIT 100

ParDo.of()

SELECT dt.d_year, item.i_brand_id
brand_id, item.i_brand brand,
sum_agg

format results
into CSV format

Local benchmark runs

Configuration:

Dependencies:

• Beam 2.28.0

• Spark 2.4.7

4 workers

• local[4] or parallelism=4

1Gb input data set

• Parquet / CSV, local files

• Macbook Pro 2017, 2,9 GHz Intel Core i7, RAM 16 GB

TPC-DS Query 3, 1Gb dataset, Spark

Distributed Execution Time!

⚠WARNING #3

Fair Benchmarking is HARD

● Instance Variability (CPU/RAM speed)
● Cloud Networking Performance Variability
● Bad Default Configurations
● Other silly configuration issues

https://www.ververica.com/blog/curious-case-broken-benchmark-revisiting-apache-flink-vs-databricks-runtime

Cluster Setup – Amazon EMR

yarn-cluster
m4.xlarge (4 CPUS / 16GB RAM)

• 1 YARN master
• 5 YARN workers (1 master + 4 workers)

AWS EMR 5.32.0 (us-east-1)
• Hadoop 2.10.1
• Spark 2.4.7
• Flink 1.11.2

Input dataset and results in AWS S3

Goal: Test default configurations. Only change for similarity between systems purposes for example same
parallelism.

Cluster runs – Amazon EMR

Beam SDK Parquet
Beam SQL Parquet

Beam SQL CSV
Spark SQL Parquet

Spark SQL CSV

Implementations (5)

1GB
10GB

100GB
1000GB*

Datasets (4) Runs (3)

* Beam SQL CSV version not working on this size on Spark Runner (yet)

1GB 10GB 100GB 1000GB

1GB 10GB 100GB 1000GB

❌

Runtime System Issues

● BEAM-11958 Jackson MethodNotFoundException on EMR ✔
○ AWS SDK for Java available by default in the EMR classpath and it uses a Jackson

dependency older than Beam’s.

● BEAM-10430 Jackson JaxbAnnotationModule breaks Flink Runner on
EMR 🚧

https://issues.apache.org/jira/browse/BEAM-11958
https://issues.apache.org/jira/browse/BEAM-10430

1GB 10GB 100GB 1000GB

✅ ❌

IO and File System surprises

BEAM-12070 Make ParquetIO splittable by default ✔
ParquetIO Read default implementation was NOT Splittable so it OOM-ed on
workers

ParquetIO
.read(schema)
.from(path)
.withSplit()

https://issues.apache.org/jira/browse/BEAM-12070

1GB 10GB 100GB 1000GB

✅ ✅ ✅ ❌

IO and File System surprises

BEAM-11972 ParquetIO should close all opened channels/readers ✔
AWS S3 cancels reads when connections are kept open.

BEAM-12329 S3 logs warnings about non-drained InputStreams ✔

https://issues.apache.org/jira/browse/BEAM-11972
https://issues.apache.org/jira/browse/BEAM-12329

1GB 10GB 100GB 1000GB

✅ ✅ ✅ ✅

Cluster runs - Google Dataflow

Constrained cluster 4 x e2-standard-4 workers + Data stored on Google Cloud Storage (GCS)

Cluster runs – Google Dataflow

Beam SDK Parquet
Beam SQL Parquet

Beam SQL CSV

Implementations (3)

1GB
10GB

100GB
1000GB

Datasets (4)

4 workers
Unlimited workers

Runs (3x2)

1GB 10GB 100GB 1000GB

✅ ✅ ✅ ✅

Credit where credit is due: Everything ran smoothly on Dataflow

Runner Translation Issues

Reports of read performance regressions on the Mailing List (ML)

25-30% Read performance degradation on Spark Runner when using the
SplittableDoFn based Read translation

BEAM-10670 Use non-SDF translation for Read by default on Spark Runner ✔
No performance difference on Dataflow 🤔

https://github.com/apache/beam/pull/14793

And finally the benchmark results...

Cluster runs – EMR – Query 3 – CSV - 1TB

Cluster runs – EMR – Query 3 – CSV – 1-100 GB

Cluster runs – EMR – Query 3 - Parquet - 1TB

Cluster runs – EMR – Query 3 – Parquet – 1-100GB

Cluster runs – Google Dataflow – Unlimited
Workers

Parquet - Beam SDK Parquet - Beam SQL

CSV - Beam SQL

* Unlimited workers give us results closer to raw Spark

Now the question became:

Where is the overhead of Beam?

Issues affecting TPC-DS on Beam performance

● SQL features and optimizations
● IO Connector
● Runtime
● Runner translation
● Implementation issues
● Beam Model overhead

Finding implementation issues - Profiling Beam

BEAM-12210 Performance issue in AvroUtils.checkTypeName✔
BEAM-12247 Reduce memory allocations in InMemoryTimerInternals✔
BEAM-12248 Reduce ArrayList allocation in Row/RowUtils✔

* Thanks Dan Kulp for the profiling analysis/fixes

https://issues.apache.org/jira/browse/BEAM-12210
https://issues.apache.org/jira/browse/BEAM-12247
https://issues.apache.org/jira/browse/BEAM-12248

Beam Model Overhead

“Every element on Beam has an associated event timestamp”

WindowedValue is the internal representation of a value (~13 bytes overhead)

{value, timestamp, [windows], paneInfo}

● More memory required per-element + extra GC
● Bigger shuffle size

Shuffle overhead can be improved by smarter encoding

Beam Model Overhead

GroupByKey in Beam also groups by Window, and...

● Merge windows if possible
● Adjust timestamps if multiple inputs
● Drop data from expired windows
● Emit results based on triggers

Extra CPU use and more GC
And there is also the Timers/State overhead

BEAM-12135 Batch optimized translation for Spark Runner

https://issues.apache.org/jira/browse/BEAM-12135

Row conversion and Coder improvements (2-3%)

BEAM-12135 Use ParamWindowedValueCoder for Bounded PCollections 🚧
BEAM-11571 Avoid conversion if input and output types are equal on
Convert transform ✔
BEAM-12328 Conversion from Avro GenericRecords to Beam Rows takes too
much time 🚧

https://issues.apache.org/jira/browse/BEAM-12135
https://issues.apache.org/jira/browse/BEAM-11571
https://issues.apache.org/jira/browse/BEAM-12328

Conclusions

Contributions

8 Issues required to run TPC-DS found (8 fixed)

10 Nice to have issues reported (5 fixed)

11 Performance Improvement Issues found (3 fixed / 3 pending)

Lessons Learned

● Defaults matter (A LOT!)

● You need real life scale runs to find real life issues

● Execution in different platforms/clouds matters for a project like Beam

● Measuring Big Data pipelines performance in the cloud is hard

● It is hard to compare specific execution systems:

○ Spark has been optimized for the batch data-lake use case for at least 6 years

● Price of abstractions

Future work

Still LOTS of things to do (wanna join?)

● Make more queries pass and other SQL improvements
● Automate daily runs on big size datasets
● Benchmark open source runners on Google Dataproc / Kubernetes
● Continue performance improvements runners translation
● Run also via Portability: Python / Go queries

Open Questions
● Are native system optimizations blocked by model translation?
● Can we have a schema-based translation of Beam pipelines?

Questions ?

Extra Slides

TPC-DS Query 29
SELECT
 i_item_id,
 i_item_desc,
 s_store_id,
 s_store_name,
 sum(ss_quantity) AS store_sales_quantity,
 sum(sr_return_quantity) AS store_returns_quantity,
 sum(cs_quantity) AS catalog_sales_quantity,
FROM
 store_sales,
 store_returns,
 catalog_sales,
 date_dim d1,
 date_dim d2,
 date_dim d3,
 store,
 item

WHERE
 d1.d_moy = 9 AND
 d1.d_year = 1999 AND
 d1.d_date_sk = ss_sold_date_sk AND
 i_item_sk = ss_item_sk AND
 s_store_sk = ss_store_sk AND
 ss_customer_sk = sr_customer_sk AND
 ss_item_sk = sr_item_sk AND
 ss_ticket_number = sr_ticket_number AND
 sr_returned_date_sk = d2.d_date_sk AND
 d2.d_moy BETWEEN 9 AND 9 + 3 AND
 d2.d_year = 1999 AND
 sr_customer_sk = cs_bill_customer_sk AND
 sr_item_sk = cs_item_sk AND
 cs_sold_date_sk = d3.d_date_sk AND
 d3.d_year IN (1999,1999+1,1999+2)
GROUP BY
 i_item_id,
 i_item_desc,
 s_store_id,
 s_store_name
ODRDER BY
 i_item_id,
 i_item_desc,
 s_store_id,
 s_store_name
LIMIT 100

TPC-DS Query 29

Types of implementations:

Beam SQL
• ParquetIO
• Parquet Table Provider

Beam SDK (Java)
• Avro GenericRecord
• Beam Schema & Row

TPC-DS Query 29, 1Gb dataset

TPC-DS Query 29, 1Gb dataset

User Reports of Performance Issues

