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● Brazilian living in London UK since 2014
● Principal Data Engineer at the BBC (Datalab team)
● Graduated in Computer Engineering at Unicamp
● Software developer for 18 years
● Passionate about open-source

Apache Beam user since early 2019
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business context goal

to personalise the experience of millions of users of BBC Sounds

to build a replacement for an external third-party recommendation engine



business context numbers

BBC Sounds has approximately

● 200,000 podcast and music episodes
● 6.5 millions of users

The personalised rails (eg. Recommended for You) display:

● 9 episodes (smartphones) or
● 12 episodes (web)



business context problem visualisation

it is similar to finding the best match among 20,000 items per user x 65 million times



business context product rules

The recommendations must also comply to the BBC 
product and editorial rules, such as:

● Diversification: no more than one item per brand
● Recency: no news episodes older than 24 hours
● Narrative arc: next drama series episode
● Language: Gaelic items to Gaelic listeners
● Availability: only available content
● Exclusion: shipping forecast and soap-opera



technology & architecture

overview



technology overview

● Python
● Google Cloud Platform
● Apache Airflow
● Apache Beam (Dataflow Runner)
● LightFM Factorisation Machine model
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risk analysis predict on the fly

On the fly Precomputed Precomputed

Concurrent load tests 
requests/s

50 50 1500

Success percentage 63.88% 100% 100%

Latency of p50 (success) 323.78 ms 1.68 ms 4.75 ms

Latency of p95 (success) 939.28 ms 3.21 ms 57.53 ms

Latency of p99 (success) 979.24 ms 4.51 ms 97.49 ms

Maximum successful 
requests per second

23 50 1500

Machine type: c2-standard-8, Python 3.7, Sanic workers: 7, Prediction threads: 1, vCPU cores: 7, Memory: 15 Gi, Deployment Replicas: 1
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risk analysis precompute recommendations

cost estimate: ~ US$ 10.00 run

Estimate of time (seconds) to precompute recommendations

analysis using c2-standard-30 (30 vCPU and 120 RAM) and LightFM



risk analysis sorting recommendations

sort 100k predictions per user with pure Python did not seem efficient
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architecture overview

User activity data Content metadata

Business Rules, part I - Non-personalised
- Recency
- Availability
- Excluded Masterbrands 
- Excluded genres

Business Rules, part II - Personalised
- Already seen items
- Local radio (if not consumed previously)
- Specific language (if not consumed previously) 
- Episode picking from a series 
- Diversification (1 episode per brand/series)

Precomputed 
recommendations

Machine Learning model 
training

Predict recommendations



precompute recommendations

pipeline evolution



pipeline 1.0 design & arguments

August 2020

apache-beam[gcp]==2.15.0

--runner=DataflowRunner
--machine-type = n1-standard-1 (1 vCPU & 3.75 GB RAM)
--num_workers=10
--autoscaling_algorithm=NONE



pipeline 1.0 design

August 2020



pipeline 1.0 design

August 2020



pipeline 1.0 error when running in dev & prod

August 2020

Workflow failed. Causes: S05:Read non-cold start 
users/Read+Retrieve user ids+Predict+Keep best scores+Sort 
scores+Process predictions+Group activity history and 
recommendations/pair_with_recommendations+Group activity 
history and recommendations/GroupByKey/Reify+Group activity 
history and recommendations/GroupByKey/Write failed., The job 
failed because a work item has failed 4 times. Look in previous log 
entries for the cause of each one of the 4 failures. For more 
information, see 
https://cloud.google.com/dataflow/docs/guides/common-errors. 
The work item was attempted on these workers: 
  beamapp-al-cht01-08141052-08140353-1tqj-harness-0k4v
      Root cause: The worker lost contact with the service.,
  beamapp-al-cht01-08141052-08140353-1tqj-harness-0k4v
      Root cause: The worker lost contact with the service.,
  beamapp-al-cht01-08141052-08140353-1tqj-harness-ffqv
      Root cause: The worker lost contact with the service.,
  beamapp-al-cht01-08141052-08140353-1tqj-harness-cjht
      Root cause: The worker lost contact with the service.



pipeline 1.0 data analysis

August 2020



1. Change machine type to a larger one
○ --machine_type=custom-1-6656 (1 vCPU, 6.5 GB RM) - 6.5GB RAM /core
○ --machine_type=m1-ultramem-40 (40 vCPU, 961 GB RAM) - 24GB RAM/core

2. Refactor the pipeline
3. Reshuffle => too expensive for the operation we were doing

○ Shuffle service
○ Reshuffle function

4. Increase the amount of workers
○ --num_workers=40

pipeline 1.0 attempts to fix (i)

September 2020



5. Control the parallelism in Dataflow so the VM wouldn’t starve out of memory

pipeline 1.0 attempts to fix (ii)

Worker node (VM)
SDK Worker

Harness Threads

SDK Worker

Harness Threads

Worker node (VM)
SDK Worker

Harness Threads

Worker node (VM)

SDK Worker

Harness Threads

Harness Threads

--number_of_worker_harness_threads=1 
--experiments=use_runner_v2
(or)
--sdk_worker_parallelism

--experiments=no_use_multiple_sdk_containers 
--experiments=beam_fn_api

September 2020



pipeline 1.0 attempts to fix (iii)

https://stackoverflow.com/questions/63705660/optimising-gcp-costs-for-a-memory-intensive-dataflow-pipeline

https://stackoverflow.com/questions/63705660/optimising-gcp-costs-for-a-memory-intensive-dataflow-pipeline


pipeline 1.0 attempts to fix (iii)

https://twitter.com/tati_alchueyr/status/1301152715498758146
https://cloud.google.com/blog/products/data-analytics/ml-inference-in-dataflow-pipelines

https://twitter.com/tati_alchueyr/status/1301152715498758146
https://cloud.google.com/blog/products/data-analytics/ml-inference-in-dataflow-pipelines


pipeline 1.0 attempts to fix (iii)

https://stackoverflow.com/questions/63705660/optimising-gcp-costs-for-a-memory-intensive-dataflow-pipeline

https://stackoverflow.com/questions/63705660/optimising-gcp-costs-for-a-memory-intensive-dataflow-pipeline


pipeline 1.0 attempts to fix (iii)

https://stackoverflow.com/questions/63705660/optimising-gcp-costs-for-a-memory-intensive-dataflow-pipeline

https://stackoverflow.com/questions/63705660/optimising-gcp-costs-for-a-memory-intensive-dataflow-pipeline


pipeline 2.0 design & arguments

apache-beam== 2.24

--runner=DataflowRunner
--machine-type = custom-30-460800-ext
--num_workers= 40
--autoscaling_algorithm=NONE

September 2020



pipeline 2.0 business outcomes

● +59% increase in interactions in Recommended for You rail
● +103% increase in interactions for under 35s

internal external

September 2020



pipeline 2.0 issues

● but costs were high...

£ 279.31 per run

September 2020



pipeline 2.0 issues

OSError: [Errno 28] No space left on device During handling

March 2021



pipeline 2.0 issues

If a batch job uses Dataflow Shuffle, then the default is 25 GB; 
otherwise, the default is 250 GB. March 2021



pipeline 2.0 issues

apache-beam== 2.24

--runner=DataflowRunner
--machine-type = custom-30-460800-ext
--num_workers= 40
--autoscaling_algorithm=NONE
--experiments=shuffle_mode=appliance

March 2021



cost savings plan

1. Administer pain relief 2. Hook up to bypass 3. Heart surgery

➔ Attempt shared 
memory

➔ Attempt FlexRS

➔ Mid week delta (only 
compute mid week for 
users with activity 
since Sunday’s run)

➔ Split pipeline
➔ Major refactor
➔ SCANN vs 

LightFM.score()
➔ etc.

Timebox: 1 week Timebox: 2 weeks Timebox: 1 month

April 2021



pipeline 3.0 design

apache-beam== 2.24

--runner=DataflowRunner
--machine-type = custom-30-460800-ext
--num_workers= 40
--autoscaling_algorithm=NONE
--experiments=shuffle_mode=appliance

April 2021



pipeline 3.0 shared memory & FlexRS strategy

● Used production-representative data (model, auxiliary data structures)
● Ran the pipeline for 0.5% users, so the iterations would be cheap

○ 100% users: £ 266.74
○ 0.5% users: £ 80.54

● Attempts
○ Shared model using custom-30-460800-ext (15 GB/vCPU)
○ Shared model using custom-30-299520-ext (9.75 GB/vCPU)
○ Shared model using custom-6-50688-ext (8.25 GB/vCPU)

■ 0.5% users: £ 18.46 => -77.5% cost reduction!

May 2021



pipeline 3.0 shared memory & FlexRS results

● However, when we tried to run the same pipeline for 100%, it would take 
hours and not complete.

● It was very inefficient and costed more than the initial implementation.

May 2021



pipeline 4.0 heart surgery

● Split compute predictions from applying rules
● Keep the interfaces to a minimal

○ between these two pipelines
○ between steps within the same pipeline

June 2021



pipeline 4.1 precompute recommendations

apache-beam== 2.29

--runner=DataflowRunner
--machine-type = n1-highmem-16
--flexrs-goal = COST_OPTIMIZED
--max-num-workers= 64
--number-of-worker-harness-threads=7
--experiments=use_runner_v2

+ Batching
+ Shared memory

https://cloud.google.com/blog/products/data-analytics/ml-inference-in-dataflow-pipelines
July 2021

https://cloud.google.com/blog/products/data-analytics/ml-inference-in-dataflow-pipelines


pipeline 4.1 precompute recommendations

Cost to run for 3.5 million users:
● 100k episodes: £ 48.92 / run
● 300 episodes: £ 3.40
● 18 episodes: £0.74

July 2021



pipeline 4.2 apply business rules

apache-beam== 2.29

--runner=DataflowRunner
--machine-type = n1-standard-1
--experiments=use_runner_v2

+ Implemented rules natively
+ Created minimal interfaces and 

views of the data

July 2021



pipeline 4.2 apply business rules

Cost to run for 3.5 million users:
● £ 0.15 - 0.83  per run

July 2021



pipeline 4.0 heart surgery

● We were able to reduce the cost of the most expensive run of the pipeline 
from £ 279.31 per run to less than £ 50

● Reduced the costs to -82%

July 2021



takeaways



1. plan based on your data
2. an expensive machine learning pipeline is better than none 
3. reducing the scope is a good starting point to saving money

○ Apply non-personalised rules before iterating per user
○ Sort top 1k recommendations by user opposed to 100k

4. using custom machine types might limit other cost savings
○ Such as FlexRS (schedulable preemptible instances in Dataflow only work)

5. to use shared memory may not lead to cost savings
6. minimal interfaces lead to more predictable behaviours in Dataflow
7. splitting the pipeline can be a solution to costs

takeaways



Thank you!
@tati_alchueyr


