
Scaling machine learning to
millions of users

with Apache Beam
Tatiana Al-Chueyr

Principal Data Engineer @ BBC Datalab

Online, 4 August 2021

@tati_alchueyr

● Brazilian living in London UK since 2014
● Principal Data Engineer at the BBC (Datalab team)
● Graduated in Computer Engineering at Unicamp
● Software developer for 18 years
● Passionate about open-source

Apache Beam user since early 2019

BBC.datalab.hummingbirds

The knowledge in this presentation is the result of lots of teamwork
within one squad of a larger team and even broader organisation

current squad team members

previous squad team members

Darren
Mundy

David
Hollands

Richard
Bownes

Marc
Oppenheimer

Bettina
Hermant

Tatiana
Al-Chueyr

Jana
Eggink

some

business context

business context goal

to personalise the experience of millions of users of BBC Sounds

to build a replacement for an external third-party recommendation engine

business context numbers

BBC Sounds has approximately

● 200,000 podcast and music episodes
● 6.5 millions of users

The personalised rails (eg. Recommended for You) display:

● 9 episodes (smartphones) or
● 12 episodes (web)

business context problem visualisation

it is similar to finding the best match among 20,000 items per user x 65 million times

business context product rules

The recommendations must also comply to the BBC
product and editorial rules, such as:

● Diversification: no more than one item per brand
● Recency: no news episodes older than 24 hours
● Narrative arc: next drama series episode
● Language: Gaelic items to Gaelic listeners
● Availability: only available content
● Exclusion: shipping forecast and soap-opera

technology & architecture

overview

technology overview

● Python
● Google Cloud Platform
● Apache Airflow
● Apache Beam (Dataflow Runner)
● LightFM Factorisation Machine model

architecture overview

User
activity

Content
metadata

Train Model
Artefacts

Predict

Extract &
Transform

Extract &
Transform

User
activity

features

Content
metadata
features

Filtered
Predictions

Apply
rulesPredictions

historical data future

risk analysis predict on the fly

modelAPI

API

user
activity

content
metadata

cached
recs

A. On the fly

B. Precompute

predicts & applies rules

retrieves pre-computed recommendations SLA goal
1500 reqs/s

< 60 ms

risk analysis predict on the fly

On the fly Precomputed Precomputed

Concurrent load tests
requests/s

50 50 1500

Success percentage 63.88% 100% 100%

Latency of p50 (success) 323.78 ms 1.68 ms 4.75 ms

Latency of p95 (success) 939.28 ms 3.21 ms 57.53 ms

Latency of p99 (success) 979.24 ms 4.51 ms 97.49 ms

Maximum successful
requests per second

23 50 1500

Machine type: c2-standard-8, Python 3.7, Sanic workers: 7, Prediction threads: 1, vCPU cores: 7, Memory: 15 Gi, Deployment Replicas: 1

risk analysis predict on the fly

modelAPI

API

user
activity

content
metadata

cached
recs

A. On the fly

B. Precompute

predicts & applies rules

retrieves pre-computed recommendations SLA goal
1500 reqs/s

< 60 ms

risk analysis precompute recommendations

cost estimate: ~ US$ 10.00 run

Estimate of time (seconds) to precompute recommendations

analysis using c2-standard-30 (30 vCPU and 120 RAM) and LightFM

risk analysis sorting recommendations

sort 100k predictions per user with pure Python did not seem efficient

architecture overview

User
activity

Content
metadata

Train Model
Artefacts

Predict

Extract &
Transform

Extract &
Transform

User
activity

features

Content
metadata
features

Filtered
Predictions

Apply
rulesPredictions

historical data future

architecture overview

User
activity

Content
metadata

Train Model
Artefacts

Predict

Extract &
Transform

Extract &
Transform

User
activity

features

Content
metadata
features

Filtered
Predictions

Apply
rulesPredictions

where we used Apache Beam

historical data future

architecture overview

User activity data Content metadata

Business Rules, part I - Non-personalised
- Recency
- Availability
- Excluded Masterbrands
- Excluded genres

Business Rules, part II - Personalised
- Already seen items
- Local radio (if not consumed previously)
- Specific language (if not consumed previously)
- Episode picking from a series
- Diversification (1 episode per brand/series)

Precomputed
recommendations

Machine Learning model
training

Predict recommendations

precompute recommendations

pipeline evolution

pipeline 1.0 design & arguments

August 2020

apache-beam[gcp]==2.15.0

--runner=DataflowRunner
--machine-type = n1-standard-1 (1 vCPU & 3.75 GB RAM)
--num_workers=10
--autoscaling_algorithm=NONE

pipeline 1.0 design

August 2020

pipeline 1.0 design

August 2020

pipeline 1.0 error when running in dev & prod

August 2020

Workflow failed. Causes: S05:Read non-cold start
users/Read+Retrieve user ids+Predict+Keep best scores+Sort
scores+Process predictions+Group activity history and
recommendations/pair_with_recommendations+Group activity
history and recommendations/GroupByKey/Reify+Group activity
history and recommendations/GroupByKey/Write failed., The job
failed because a work item has failed 4 times. Look in previous log
entries for the cause of each one of the 4 failures. For more
information, see
https://cloud.google.com/dataflow/docs/guides/common-errors.
The work item was attempted on these workers:
 beamapp-al-cht01-08141052-08140353-1tqj-harness-0k4v
 Root cause: The worker lost contact with the service.,
 beamapp-al-cht01-08141052-08140353-1tqj-harness-0k4v
 Root cause: The worker lost contact with the service.,
 beamapp-al-cht01-08141052-08140353-1tqj-harness-ffqv
 Root cause: The worker lost contact with the service.,
 beamapp-al-cht01-08141052-08140353-1tqj-harness-cjht
 Root cause: The worker lost contact with the service.

pipeline 1.0 data analysis

August 2020

1. Change machine type to a larger one
○ --machine_type=custom-1-6656 (1 vCPU, 6.5 GB RM) - 6.5GB RAM /core
○ --machine_type=m1-ultramem-40 (40 vCPU, 961 GB RAM) - 24GB RAM/core

2. Refactor the pipeline
3. Reshuffle => too expensive for the operation we were doing

○ Shuffle service
○ Reshuffle function

4. Increase the amount of workers
○ --num_workers=40

pipeline 1.0 attempts to fix (i)

September 2020

5. Control the parallelism in Dataflow so the VM wouldn’t starve out of memory

pipeline 1.0 attempts to fix (ii)

Worker node (VM)
SDK Worker

Harness Threads

SDK Worker

Harness Threads

Worker node (VM)
SDK Worker

Harness Threads

Worker node (VM)

SDK Worker

Harness Threads

Harness Threads

--number_of_worker_harness_threads=1
--experiments=use_runner_v2
(or)
--sdk_worker_parallelism

--experiments=no_use_multiple_sdk_containers
--experiments=beam_fn_api

September 2020

pipeline 1.0 attempts to fix (iii)

https://stackoverflow.com/questions/63705660/optimising-gcp-costs-for-a-memory-intensive-dataflow-pipeline

https://stackoverflow.com/questions/63705660/optimising-gcp-costs-for-a-memory-intensive-dataflow-pipeline

pipeline 1.0 attempts to fix (iii)

https://twitter.com/tati_alchueyr/status/1301152715498758146
https://cloud.google.com/blog/products/data-analytics/ml-inference-in-dataflow-pipelines

https://twitter.com/tati_alchueyr/status/1301152715498758146
https://cloud.google.com/blog/products/data-analytics/ml-inference-in-dataflow-pipelines

pipeline 1.0 attempts to fix (iii)

https://stackoverflow.com/questions/63705660/optimising-gcp-costs-for-a-memory-intensive-dataflow-pipeline

https://stackoverflow.com/questions/63705660/optimising-gcp-costs-for-a-memory-intensive-dataflow-pipeline

pipeline 1.0 attempts to fix (iii)

https://stackoverflow.com/questions/63705660/optimising-gcp-costs-for-a-memory-intensive-dataflow-pipeline

https://stackoverflow.com/questions/63705660/optimising-gcp-costs-for-a-memory-intensive-dataflow-pipeline

pipeline 2.0 design & arguments

apache-beam== 2.24

--runner=DataflowRunner
--machine-type = custom-30-460800-ext
--num_workers= 40
--autoscaling_algorithm=NONE

September 2020

pipeline 2.0 business outcomes

● +59% increase in interactions in Recommended for You rail
● +103% increase in interactions for under 35s

internal external

September 2020

pipeline 2.0 issues

● but costs were high...

£ 279.31 per run

September 2020

pipeline 2.0 issues

OSError: [Errno 28] No space left on device During handling

March 2021

pipeline 2.0 issues

If a batch job uses Dataflow Shuffle, then the default is 25 GB;
otherwise, the default is 250 GB. March 2021

pipeline 2.0 issues

apache-beam== 2.24

--runner=DataflowRunner
--machine-type = custom-30-460800-ext
--num_workers= 40
--autoscaling_algorithm=NONE
--experiments=shuffle_mode=appliance

March 2021

cost savings plan

1. Administer pain relief 2. Hook up to bypass 3. Heart surgery

➔ Attempt shared
memory

➔ Attempt FlexRS

➔ Mid week delta (only
compute mid week for
users with activity
since Sunday’s run)

➔ Split pipeline
➔ Major refactor
➔ SCANN vs

LightFM.score()
➔ etc.

Timebox: 1 week Timebox: 2 weeks Timebox: 1 month

April 2021

pipeline 3.0 design

apache-beam== 2.24

--runner=DataflowRunner
--machine-type = custom-30-460800-ext
--num_workers= 40
--autoscaling_algorithm=NONE
--experiments=shuffle_mode=appliance

April 2021

pipeline 3.0 shared memory & FlexRS strategy

● Used production-representative data (model, auxiliary data structures)
● Ran the pipeline for 0.5% users, so the iterations would be cheap

○ 100% users: £ 266.74
○ 0.5% users: £ 80.54

● Attempts
○ Shared model using custom-30-460800-ext (15 GB/vCPU)
○ Shared model using custom-30-299520-ext (9.75 GB/vCPU)
○ Shared model using custom-6-50688-ext (8.25 GB/vCPU)

■ 0.5% users: £ 18.46 => -77.5% cost reduction!

May 2021

pipeline 3.0 shared memory & FlexRS results

● However, when we tried to run the same pipeline for 100%, it would take
hours and not complete.

● It was very inefficient and costed more than the initial implementation.

May 2021

pipeline 4.0 heart surgery

● Split compute predictions from applying rules
● Keep the interfaces to a minimal

○ between these two pipelines
○ between steps within the same pipeline

June 2021

pipeline 4.1 precompute recommendations

apache-beam== 2.29

--runner=DataflowRunner
--machine-type = n1-highmem-16
--flexrs-goal = COST_OPTIMIZED
--max-num-workers= 64
--number-of-worker-harness-threads=7
--experiments=use_runner_v2

+ Batching
+ Shared memory

https://cloud.google.com/blog/products/data-analytics/ml-inference-in-dataflow-pipelines
July 2021

https://cloud.google.com/blog/products/data-analytics/ml-inference-in-dataflow-pipelines

pipeline 4.1 precompute recommendations

Cost to run for 3.5 million users:
● 100k episodes: £ 48.92 / run
● 300 episodes: £ 3.40
● 18 episodes: £0.74

July 2021

pipeline 4.2 apply business rules

apache-beam== 2.29

--runner=DataflowRunner
--machine-type = n1-standard-1
--experiments=use_runner_v2

+ Implemented rules natively
+ Created minimal interfaces and

views of the data

July 2021

pipeline 4.2 apply business rules

Cost to run for 3.5 million users:
● £ 0.15 - 0.83 per run

July 2021

pipeline 4.0 heart surgery

● We were able to reduce the cost of the most expensive run of the pipeline
from £ 279.31 per run to less than £ 50

● Reduced the costs to -82%

July 2021

takeaways

1. plan based on your data
2. an expensive machine learning pipeline is better than none
3. reducing the scope is a good starting point to saving money

○ Apply non-personalised rules before iterating per user
○ Sort top 1k recommendations by user opposed to 100k

4. using custom machine types might limit other cost savings
○ Such as FlexRS (schedulable preemptible instances in Dataflow only work)

5. to use shared memory may not lead to cost savings
6. minimal interfaces lead to more predictable behaviours in Dataflow
7. splitting the pipeline can be a solution to costs

takeaways

Thank you!
@tati_alchueyr

