

Scaling machine learning to millions of users with Apache Beam

Tatiana Al-Chueyr Principal Data Engineer @ BBC Datalab

Online, 4 August 2021

@tati_alchueyr

- Brazilian living in London UK since 2014
- Principal Data **Engineer** at the **BBC** (Datalab team)
- Graduated in **Computer Engineering** at Unicamp
- Software developer for 18 years
- Passionate about open-source

Apache Beam user since early 2019

BBC.datalab.hummingbirds

The knowledge in this presentation is the result of lots of **teamwork** within **one squad** of a **larger team** and even **broader organisation**

previous squad team members

Darren Mundy

Richard **Bownes**

Tatiana Al-Chueyr

Bettina Hermant

current squad team members

David Hollands

Jana

Eggink

Marc Oppenheimer

some business context

business context goal

to build a **replacement** for an **external third-party** recommendation engine

to **personalise** the experience of **millions of users** of **BBC Sounds**

business context numbers

BBC Sounds has approximately

- 200,000 podcast and music episodes
- 6.5 millions of users

The personalised rails (eg. Recommended for You) display:

- 9 episodes (smartphones) or
- **12 episodes** (web)

business context problem visualisation

it is similar to finding the **best match** among **20,000 items** per user x **65 million** times

business context product rules

The **recommendations** must also comply to the BBC product and editorial **rules**, **such as:**

- **Diversification**: no more than **one** item per **brand**
- Recency: no news episodes older than 24 hours
- Narrative arc: next drama series episode
- Language: Gaelic items to Gaelic listeners
- **Availability**: only **available** content
- Exclusion: shipping forecast and soap-opera

technology & architecture OVERVIEW

technology overview

- **Python**
- Google Cloud Platform
- Apache Airflow
- Apache Beam (Dataflow Runner)
- LightFM Factorisation Machine model

risk analysis predict on the fly

	On the fly	Precomputed	Precomputed
Concurrent load tests requests/s	50	50	1500
Success percentage	63.88%	100%	100%
Latency of p50 (success)	323.78 ms	1.68 ms	4.75 ms
Latency of p95 (success)	939.28 ms	3.21 ms	57.53 ms
Latency of p99 (success)	979.24 ms	4.51 ms	97.49 ms
Maximum successful requests per second	23	50	1500

Machine type: c2-standard-8, Python 3.7, Sanic workers: 7, Prediction threads: 1, vCPU cores: 7, Memory: 15 Gi, Deployment Replicas: 1

risk analysis predict on the fly

risk analysis precompute recommendations

Estimate of time (seconds) to precompute recommendations

Number of threads	1	1	1	4	4	4	8	8	8	16	16	16	30	30	30
Candidate items \ Chunk of users	10k	60k	100k	10k	60k	100k	10k	60k	100k	10k	60k	100k	10k	60k	100k
1 user	0.01	0.05	0.05	0.01	0.01	0.02	0.02	0.02	0.03	0.01	0.02	0.03	0.01	0.01	0.03
100 users	0.32	2.45	4.21	0.16	1.11	1.86	0.14	0.86	1.45	0.12	0.76	1.28	0.11	0.73	1.20
1000 users	3.09	24.10	39.95	1.44	10.67	18.31	1.17	8.47	14.22	1.04	7.25	12.53	1.00	7.02	11.75
10000 users	31.05	231.13	409.41	14.24	109.31	184.96	11.40	84.50	141.85	9.99	73.69	125.3	9.75	69.73	116.58

analysis using c2-standard-30 (30 vCPU and 120 RAM) and LightFM

cost estimate: ~ US\$ 10.00 run

risk analysis sorting recommendations

Sorting time (in seconds)			
Chunk of users \ Candidate items	10k	60k	100k
1 user	0.14	0.10	0.17
100 users	1.39	9.68	17.08
1000 users	16.07	105.35	180.60
10000 users	-	2	-

sort 100k predictions per user with pure Python did not seem efficient

where we used Apache Beam

precompute recommendations pipeline evolution

pipeline 1.0 design & arguments

apache-beam[gcp]==2.15.0

--runner=DataflowRunner

--machine-type = n1-standard-1 (1 vCPU & 3.75 GB RAM)

--num_workers=10

--autoscaling_algorithm=NONE

August 2020

pipeline 1.0 design

pipeline 1.0 design

pipeline 1.0 error when running in dev & prod

Workflow failed. Causes: S05:Read non-cold start users/Read+Retrieve user ids+Predict+Keep best scores+Sort scores+Process predictions+Group activity history and recommendations/pair_with_recommendations+Group activity history and recommendations/GroupByKey/Reify+Group activity history and recommendations/GroupByKey/Write failed., The job failed because a work item has failed 4 times. Look in previous log entries for the cause of each one of the 4 failures. For more information, see https://cloud.google.com/dataflow/docs/guides/common-errors. The work item was attempted on these workers: beamapp-al-cht01-08141052-08140353-1tgj-harness-0k4v

Root cause: The worker lost contact with the service., beamapp-al-cht01-08141052-08140353-1tqj-harness-0k4v Root cause: The worker lost contact with the service., beamapp-al-cht01-08141052-08140353-1tqj-harness-ffqv Root cause: The worker lost contact with the service., beamapp-al-cht01-08141052-08140353-1tqj-harness-cjht Root cause: The worker lost contact with the service.

August 2020

pipeline 1.0 data analysis

Data structure	(dev) size in disk	<mark>(prod)</mark> Size in disk	(dev) size in memory	<mark>(prod)</mark> size in memory
model	1.74 GiB	3.99 GiB	2.49 GB	4.50 GB
candidate items	22.58 MiB	23.95 MiB	0.19 GB	0.20 GB
item features	832.11 KiB	1.26 MiB	0.04 GB	0.05 GB
mapping	357 MiB	404 MiB	1.30 GB	2.79 GB
consumed items	20.04 MiB	48.16 MiB		
consumption history	299 MiB	1.45 GiB		
			4.02 GB	7.54 GB

August 2020

- 1. Change machine type to a larger one
 - --machine_type=custom-1-6656 (1 vCPU, 6.5 GB RM) 6.5GB RAM /core
 - --machine_type=m1-ultramem-40 (40 vCPU, 961 GB RAM) 24GB RAM/core
- 2. Refactor the pipeline
- 3. Reshuffle => too expensive for the operation we were doing
 - Shuffle service
 - Reshuffle function
- 4. Increase the amount of workers
 - --num_workers=40

(or)

5. Control the parallelism in Dataflow so the VM wouldn't starve out of memory

While monitoring the Compute Engine instances running the Dataflow job, it was clear that they

https://stackoverflow.com/questions/63705660/optimising-gcp-costs-for-a-memory-intensive-dataflow-pipeline

Tatiana Al-Chueyr @tati_alchueyr

We've been struggling to reduce the costs of an @ApacheBeam pipeline in @googlecloud Dataflow: stackoverflow.com/questions/6370.... Any ideas @datancoffee @rarokni?

> Optimising GCP costs for a memory-intensive Dataflow Pi... We want to improve the costs of running a specific Apache Beam pipeline (Python SDK) in GCP Dataflow. We have bu... \mathcal{O} stackoverflow.com

2:39 PM · Sep 2, 2020 · Twitter Web App

reza rokni @rarokni · Dec 10, 2020 Replying to @tati_alchueyr @ApacheBeam and 2 others You may also find this new blog useful :-) Google Cloud ML inference in Dataflow pipelines | Google Cloud Blog As more people use ML inference in Dataflow pipelines to extract insights from data, we've seen some common patterns emerge. In t... 𝔗 cloud.google.com 1 11 1 9 3 Sergei Sokolenko @datancoffee · Sep 3, 2020 Replying to @tati_alchueyr @ApacheBeam and 2 others Since this is a Python pipeline, I would recommend using Runner v2, which offers much better performance on Python. It looks like you've tried it already, but had difficulty setting the number of threads to 1. Runner v2 is relatively new, maybe we need to use a diff param 0 2 T1. 1 Sergei Sokolenko @datancoffee · Sep 3, 2020 I think someone from your team reached out to our eng team already. Let's work this case, ans report back to this thread. ſΊ £

https://twitter.com/tati_alchueyr/status/1301152715498758146

https://cloud.google.com/blog/products/data-analytics/ml-inference-in-dataflow-pipelines

....

2 Answers

Active	Oldest	Votes
--------	--------	-------

3

0

- We are working on long-term solutions to these problems, but here is a tactical fix that should prevent the model duplication that you saw in approaches 1 and 2:
- Share the model in a VM across workers, to avoid it being duplicated in each worker. Use the following utility
- (https://github.com/apache/beam/blob/master/sdks/python/apache_beam/utils/shared.py), which is available out of the box in Beam 2.24 If you are using an earlier version of Beam, copy just the shared.py to your project and use it as user code.

Share Follow

answered Sep 9 '20 at 0:21

Add a comment

https://stackoverflow.com/questions/63705660/optimising-gcp-costs-for-a-memory-intensive-dataflow-pipeline

I don't think that at this moment there's an option to control the number of executors per VM, it seems that the closest that you will get there is by using the option (1) and assume a Python executor per core.

```
Option (1)
```

2

0

--number_of_worker_harness_threads=1 --experiments=use_runner_v2

To compensate on the cpu-mem ratio you need, I'd suggest using <u>custom machines with</u> <u>extended memory</u>. This approach should be more cost-effective.

For example, the cost of a running a single executor and a single thread on a n1-standard-4 machine (4 CPUs - 15GB) will be roughly around 30% more expensive than running the same workload using a custom-1-15360-ext (1 CPU - 15GB) custom machine.

Share Follow

edited Sep 3 '20 at 22:34

answered Sep 3 '20 at 21:00 Tlaquetzal 2,197 • 1 • 8 • 18

https://stackoverflow.com/questions/63705660/optimising-gcp-costs-for-a-memory-intensive-dataflow-pipeline

pipeline 2.0 design & arguments

apache-beam== 2.24

--runner=DataflowRunner --machine-type = custom-30-460800-ext --num_workers= 40 --autoscaling_algorithm=NONE

pipeline 2.0 business outcomes

- +59% increase in interactions in Recommended for You rail
- +103% increase in interactions for under 35s

• but costs were high...

Resource metrics

Current vCPUs 💡	1,200
Total vCPU time 💡	3,170.248 vCPU hr
Current memory 🔞	17.58 TB
Total memory time 💡	47,553.721 GB hr
Current HDD PD	9.77 TB
Total HDD PD time 💡	26,418.734 GB hr
Current SSD PD	0 B
Total SSD PD time 💡	0 GB hr

Elapsed time	2 hr 42 min
Encryption type	Google-managed key

OSError: [Errno 28] No space left on device During handling

	successful compute-predictions-21628eba 2021-02-24_20_06_12-17726452853028084617	unsuccessful compute-predictions-191557b2 2021-02-28_20_01_56-16233421279575525541
	25 February 2021	1st March 2021
consumption-history/	1.87 GiB	1.88 GiB
consumed-items/	55.63 MiB	55.68 MiB
candidate-items/rfy/	25.06 MiB	25.09 MiB
xantus.pkl	4.67 GiB	4.69 GiB
item_features.npz	1.73 MiB	1.73 MiB
mapping.json	473.84 MiB	476.01 MiB

March 2021

Resource metrics

Current vCPUs	1,200
Total vCPU time 🔞	1,025.553 vCPU hr
Current memory	17.58 TB
Total memory time 💡	15,383.289 GB hr
Current HDD PD	1,000 GB
Total HDD PD time 💡	854.627 GB hr
Current SSD PD 💡	0 B
Total SSD PD time 💡	0 GB hr
Total Shuffle data processed 🕜	241.01 KB
Billable Shuffle data	60.25 KB

If a batch job uses Dataflow Shuffle, then the default is 25 GB; otherwise, the default is 250 GB.

March 2021

apache-beam== 2.24

--runner=DataflowRunner

--machine-type = custom-30-460800-ext

--num_workers= 40

--autoscaling_algorithm=NONE

--experiments=shuffle_mode=appliance

March 2021

cost savings plan

1. Administer pain relief	2. Hook up to bypass	3. Heart surgery
→ Attempt shared	→ Mid week delta (only	→ Split pipeline
memory	compute mid week for	→ Maior refactor
→ Attempt FlexRS	users with activity	→ SCANN vs
·	since Sunday's run)	LightFM.score()
		→ etc.

Timebox: 1 week

Timebox: 2 weeks

Timebox: 1 month

April 2021

pipeline 3.0 design

apache-beam== 2.24
runner=DataflowRunner machine-type = custom-30-460800-ext num_workers= 40 autoscaling_algorithm=NONE experiments=shuffle_mode=appliance

anasha haama-- 0.04

April 2021

pipeline 3.0 shared memory & FlexRS strategy

- Used production-representative data (model, auxiliary data structures)
- Ran the pipeline for 0.5% users, so the iterations would be cheap
 - 100% users: £ 266.74
 - 0.5% users: £ 80.54
- Attempts
 - Shared model using custom-30-460800-ext (15 GB/vCPU)
 - Shared model using custom-30-299520-ext (9.75 GB/vCPU)
 - Shared model using custom-6-50688-ext (8.25 GB/vCPU)
 - 0.5% users: £ 18.46 => -77.5% cost reduction!

pipeline 3.0 shared memory & FlexRS results

- However, when we tried to run the same pipeline for 100%, it would take hours and not complete.
- It was very inefficient and costed more than the initial implementation.

pipeline 4.0 heart surgery

- Split compute predictions from applying rules
- Keep the interfaces to a minimal
 - between these two pipelines
 - between steps within the same pipeline

June 2021

pipeline 4.1 precompute recommendations

--runner=DataflowRunner
 --machine-type = n1-highmem-16
 --flexrs-goal = COST_OPTIMIZED
 --max-num-workers= 64
 --number-of-worker-harness-threads=7
 --experiments=use_runner_v2
 + Batching

+ Shared memory

apache-beam== 2.29

https://cloud.google.com/blog/products/data-analytics/ml-inference-in-dataflow-pipelines

pipeline 4.1 precompute recommendations

Resource metric

Current vCPUs	252
Total vCPU time 🔞	38.042 vCPU hr
Current memory 🔞	945 GB
Total memory time 🔞	142.658 GB hr
Current HDD PD 🔞	6.15 TB
Total HDD PD time 🔞	951.053 GB hr
Current SSD PD 🔞	0 B
Total SSD PD time 🔞	0 08 hr
Total Shuffle data processed 🔞	271.44 GB
Billable Shuffle data processed 🔞	73.22 GB

Cost to run for 3.5 million users:

- 100k episodes: £ 48.92 / run
- 300 episodes: £ 3.40
- 18 episodes: £0.74

pipeline 4.2 apply business rules

apache-beam== 2.29
--runner=DataflowRunner
--machine-type = n1-standard-1
--experiments=use_runner_v2
+ Implemented rules natively
+ Created minimal interfaces and

+ Created minimal interfaces and views of the data

pipeline 4.2 apply business rules

Resource metrics

Current vCPUs	252
Total vCPU time 🔞	38.042 vCPU hr
Current memory 🔞	945 GB
Total memory time 🔞	142.658 GB hr
Current HDD PD	6.15 TB
Total HDD PD time 🔞	951.053 GB hr
Current SSD PD	0 B
Total SSD PD time 🔞	0 08 hr
Total Shuffle data	271.44 GB
processed 10	
Billable Shuffle data processed 🔞	73.22 GB

Cost to run for 3.5 million users:

• £0.15 - 0.83 per run

pipeline 4.0 heart surgery

- We were able to reduce the cost of the most expensive run of the pipeline from £ 279.31 per run to less than £ 50
- Reduced the costs to -82%

takeaways

takeaways

- 1. plan based on your data
- 2. an **expensive** machine learning pipeline is better **than none**
- 3. reducing the **scope** is a good starting point to **saving money**
 - Apply non-personalised rules before iterating per user
 - Sort top 1k recommendations by user opposed to 100k
- 4. using **custom machine types** might limit other cost savings
 - Such as FlexRS (schedulable preemptible instances in Dataflow only work)
- 5. to use **shared memory** may not lead to cost savings
- 6. **minimal interfaces** lead to more **predictable behaviours** in Dataflow
- 7. splitting the pipeline can be a solution to costs

Thank you! @tati_alchueyr

